Bonn Topology Group - Abstracts
General Information - Members - Activities - Topology Seminar
Talk
June 25th 2019
Mario Salvetti (Univerisità di Pisa, Italy): Cohomology of
superelliptic families and complex braid groups
Abstract
We consider the universal family E_n^d of superelliptic curves: each curve S_n^d in the family is a d-fold covering of the unit disk, totally ramified over a set P of n distinct points; S_n^d --> E_n^d --> Conf_n is a fibre bundle, where Conf_n is the configuration space of n distinct points. We find that E_n^d is the classifying space for the complex braid group of type B(d,d,n) and we compute a big part of the integral homology of E_n^d, including a complete calculation of the stable groups over finite fields by means of Poincare series. The computation of the main part of the above homology reduces to the computation of the homology of the classical braid group with coefficients in the first homology group of S_n^d, endowed with the monodromy action. While giving a geometric description of such monodromy of the above bundle, we introduce generalized 1/d-twists, associated to each standard generator of the braid group, which reduce to standard Dehn twists for d=2.
Back to seminar page
News
Abel in Bonn: Abel Symposium 2025
Wolfgang Lück receives the von Staudt Prize
Gerd Faltings elected member of the Order Pour le Mérite
Geordie Williamson receives the Max Planck-Humboldt Research Award 2024
ERC Starting Grant for Markus Hausmann
EMS Prize 2024 for Jessica Fintzen
Bonn mathematics performs excellently again in QS ranking
Stefan Schwede is invited speaker at the ECM 2024 in Sevilla
Jessica Fintzen wins Cole Prize
Catharina Stroppel receives Gottfried Wilhelm Leibniz Prize 2023
Jessica Fintzen is awarded a Whitehead Prize of the London Mathematical Society
Peter Scholze elected as Foreign Member of the Royal Society