Aufgabe 1. Beweisen Sie dass $\lim_{k\to\infty} \sqrt[k]{x} = 1$ für alle reelle Zahlen x > 0.

Aufgabe 2 (Bernoulli-Ungleichung). Sei $x \in \mathbb{R}$ mit $x \ge -1$. In dieser Aufgabe verallgemeinern wir die Bernoulli-Ungleichung (Lemma 4.14) auf rationale Exponenten.

(a) Sei q=n/m, wobei $n,m\in\mathbb{N}_{\geq 1}$ mit $n\leq m$. Beweisen Sie die Ungleichung

$$(1+x)^q \le 1 + qx.$$

Hinweis: Benutzen Sie die Ungleichung vom arithmetischen und geometrischen Mittel (Präsenzblatt 3, Aufgabe 1).

(b) Sei $q \in \mathbb{Q}_{>1}$. Beweisen Sie die Ungleichung

$$(1+x)^q \ge 1 + qx.$$

Aufgabe 3 ((Absolute) Konvergenz von Reihen). Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} . Beweisen oder widerlegen Sie die folgenden Aussagen:

- (a) Es gelte zusätzlich $a_n > 0$ für alle $n \in \mathbb{N}$. Falls $\frac{a_{n+1}}{a_n} < 1$ für alle $n \in \mathbb{N}$, dann konvergiert $\sum_n a_n$.
- (b) Es gelte zusätzlich $a_n > 0$ für alle $n \in \mathbb{N}$. Falls $\sum_n a_n$ konvergiert, dann konvergiert auch $\sum_n \frac{\sqrt{a_n}}{n}$.
- (c) Die Reihe $\sum_{n} \frac{1}{n^2 + |a_n|}$ konvergiert absolut.
- (d) Die Reihe $\sum_{n} \frac{(-1)^n}{n+|a_n|}$ konvergiert absolut.

Aufgabe 4 (Konvergenz von Reihen). Untersuchen Sie die nachfolgenden Reihen auf Konvergenz mithilfe von den Kriterien aus Abschnitt 6.2.

- (a) $\sum_{k} \frac{1}{1+k+(-1)^k}$.
- (b) $\sum_{k} \frac{3+k}{3^k}$.
- (c) $\sum_{k} \frac{(k^k)^2}{k^{k^2}}$.
- (d) $\sum_{k} \frac{(2k)!}{(k!)^2}$.
- (e) $\sum_{k} \left(\frac{k^2 + 1}{5k + 6k^2} \right)^{5k}$.