Tenth exercise sheet "Algebra II" winter term 2024/5. Let K be a field equipped with a non-trivial and non-Archimedean absolute value $|\cdot|$ and V a K-vector space equipped with an ultrametric norm $\|\cdot|V\|$.

Definition 1. A K-linear functional $V \xrightarrow{\ell} K$ is called bounded if there is a non-negative real number C such that

(1) $|\ell(v)| \le C \|v\|V\|$

holds for all $v \in V$. The K-vector space of bounded K-linear functionals is denoted V^* and the smallest C for which (1) holds is denoted $\|\ell \| V^* \|$.

If K is complete and $\dim_K V < \infty$ it follows from Proposition 3.2.1 of the lecture that all K-linear functionals on V are bounded.

Problem 1 (4 points). Assume that $\dim_K V < \infty$ and that for every $v \in V$ there is a linear functional $\ell \in V^*$ such that $||v||V|| \cdot ||\ell||V^*|| = |\ell(v)|$. Show that V has an orthogonal base!

In view of the Hahn-Banach theorem from classical functional analysis one could thus hope that the equivalent conditions of Proposition 3.3.1 from the lecture hold for all finite field extensions of a complete non-Archimedean field K. However this is not the case as the Hahn-Banach theorem does not always hold in non-Archimedean functional analysis. The following problems serve as an introduction to this matter. Recall that the notion of a ball in K was introduced in the last exercise sheet.

Problem 2 (3 points). For a non-empty set \mathfrak{M} of balls in a field K equipped with a non-Archimedean absolute value, show that the following conditions are equivalent:

- The intersection of any finite subset of \mathfrak{M} is non-empty.
- The intersection of two elements of \mathfrak{M} is non-empty.
- If $B_{1,2} \in \mathfrak{M}$ then $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

Definition 2. We call K spherically complete if for every \mathfrak{M} satisfying the equivalent conditions from Problem 2, the intersection of all elements of \mathfrak{M} is non-empty.

Remark 1. An equivalent condition is that for every sequence $(B_i)_{i=1}^{\infty}$ of balls in K such that $B_1 \supseteq B_2 \ldots$, the intersection $\bigcap_{i=1}^{\infty} B_i$ is nonempty. The fact that this is an equivalent characterization of sperical completeness is rather obvious and can be used without proof in the solutions to the following problems. **Problem 3** (3 points). If K is spherically complete, show that it is complete!

Problem 4 (2 points). If K is complete and $|K^{\times}|$ a discrete subgroup of $(0, \infty)_{\mathbb{R}}$, show that K is spherically complete!

Remark 2. If $|K^{\times}|$ is not discrete and K contains a countable dense subset $\{x_i \mid i \in \mathbb{N}\}$ then the following argument shows that K cannot be spherically complete: Chose a sequence $(\rho_i)_{i=0}^{\infty}$ of elements of K such that the sequence of real numbers $r_i = |\rho_i|$ is strictly monotonically decreasing and has a positive limit. We chose a sequence $B_0 \supseteq B_1 \ldots$ of \leq -balls of radius r_i in K as follows. Chose K₀ such that does not contain x_0 . If n > 0 and the $(B_i)_{i=0}^{n-1}$ of radius r_i not containing x_i have already been chosen, select $B_n \subseteq B_{n-1}$ of radius r_n not containing x_n . This is possible since B_{n-1} contains more than one \leq -ball of radius r_n and two such balls are disjoint if they are different.

It is easy to see that $\bigcap_{i=0}^{\infty} B_i = \emptyset$ if the balls are chosen in this way. For instance, the field \mathbb{C}_p is not spherically complete.

The relation between spherical completeness and the Hahn-Banach theorem results from the following fact:

Problem 5 (4 points). Let V be K-vector space equipped with a ultrametric norm $\|\cdot\|V\|$. Let $W \subseteq V$ be a subspace of codimension 1 and let $\|\cdot\|W\|$ be the restriction to W of $\|\cdot\|V\|$. Let $\ell \in W^*$ and $C = \|\ell\|W^*\|$, and let $v \in V \setminus W$. For $t \in K$, consider the linear functional ℓ_t on V defined by

$$\ell_t(w + \lambda v) = \ell(w) + t\lambda$$

for $w \in W$, $\lambda \in K$. For $w \in W$, let

$$B_w = \{ t \in K \mid |\ell_t(w+v)| \le C \|w+v\|V\| \}.$$

Show that B_w is a ball in K and show that $\mathfrak{M} = \{B_w \mid w \in W\}$ satisfies the equivalent conditions from Problem 2!

Chosing t from the intersection of all B_w , if this is $\neq \emptyset$, allows us to extend ℓ to V preserving its norm. Combining this with a Zorn lemma argument shows that the Hahn-Banach theorem holds in non-Archimedean functional analysis over spherically complete non-Archimedean fields. On the other side the Hahn-Banach theorem allows one to construct linear functionals on $\ell_{\infty}(K)$ with properties making them "pseudo-limits" of bounded sequences in K which do not necessarily converge, and in the situation of 1 one can apply such a pseudlimit to the a sequence x_i where $x_i \in B_i$. Fully working this out gives **Problem 6** (7 points). For a field K equipped with a non-Archimedean absolute value, the following conditions are equivalent:

- K is spherically complete.
- The Hahn-Banach theorem holds over K: If V is a K-vector space equipped with an ultrametric norm $\|\cdot |V\|$, $W \subseteq V$ a subspace and $\|\cdot |W\|$ the restriction to W of $\|\cdot |V\|$ and $\ell \in W^*$ then there is $\lambda \in V^*$ such that $\lambda |_W = \ell$ and $\|\lambda |V^*\| = \|\ell |W^*\|$.
- Let ℓ_{∞} be the K-vector space of sequences $x = (x_i)_{i=1}^{\infty}$ from K for which $||x|\ell_{\infty}|| = \sup_{1 \le i < \infty} |x_i|$ is finite. Then there is $\lambda \in \ell_{\infty}^*$ such that $||\lambda|\ell_{\infty}^*|| = 1$ and such that $\lambda(x) = \xi$ if $\xi \in K$ and the sequence satisfies that $x_i = \xi$ for all sufficiently large ξ .

Remark 3. Using this in Problem 1 shows that the equivalent conditions of Proposition 3.3.1 from the lecture hold for all finite field extensions of a spherically complete field K. In particular this applies to the case where $|K^{\times}|$ is discrete and thus finishes the alternative proof of Proposition 3.3.2 in that case, which was only hinted at in the lecture.

Problem 7 (3 points). Assume that K is spherically complete with respect to $|\cdot|$, that the residue field $\mathfrak{k} = K^o/K^{oo}$ is algebraically closed and the group $|K^{\times}| \subseteq (0, \infty)_{\mathbb{R}}^{\times}$ divisible. Show that K is algebraically closed!

Since the assumptions imply that $|K^{\times}|$ is not discrete the previous result is rather hard to apply, the easiest application being to the large field of Hahn series. However, instead of Hahn-Banach the trace $\text{Tr}_{L/K}$ can also be used to construct the linear functional needed for an application of Problem 1.

Problem 8 (4 points). Assume that K is complete with respect to $|\cdot|$ and that L/K is a finite field extension of K of degree prime to the characteristic of the residue field \mathfrak{k} of K. Show that L/K satisfies the equivalent conditions of Proposition 3.3.1 from the lecture!

Remark 4. For an example where K is complete and has a finite field extension L without an orthonormal base see subsection 3.6.1 of Bosch/Güntzer/Remmert, Non-Archimedean Analysis.

Problem 9 (3 points). Assume that K is complete with respect to $|\cdot|$, that its residue field \mathfrak{k} is algebraically closed and has characteristic zero and that the group $|K^{\times}|$ is divisible. Show that K is algebraically closed!

For instance, let \mathfrak{k} be an algebraically closed field of characteristic 0 and K the field of formal series with coefficients $f_l \in \mathfrak{k}$

(2)
$$f(T) = \sum_{l \in \mathbb{Q}} f_l T^l$$

where for all $n \in \mathbb{N}$, only finitely many of the f_l with l < n are $\neq 0$. Then K is algebraically closed. This result was at least in principle known to Newton, whose approach to calculus was by clever manipulations with power series.

Another approach to a related result is by using Hensel's lemma.

Problem 10 (3 points). Let K be complete with respect to $|\cdot|$ and let n be a positive integer which is prime to the characteristic of the residue field. Let $x \in K^o$ such that $\xi = x \mod K^{oo}$ is not zero and an n-th power in \mathfrak{k} . Show that x is an n-th power in K^o !

If $|K^{\times}|$ is discrete, K^{o} is a discrete valuation ring. In the case where \mathfrak{k} is algebraically closed and of characteristic prime to n it easily follows that $K(\sqrt[n]{\pi})$ does not depend on the choice of a uniformizer π of K^{o} . Moreover in view of the following result this is the only extension of degree n of K.

Problem 11 (4 points). Let $|K^{\times}|$ be discrete and L/K a finite field extension of degree d prime to the characteristic of the residue field \mathfrak{k} . Assume that \mathfrak{k} is algebraically closed. Show that there is a uniformizing element π of the discrete valuation ring L° such that π^{d} is a uniformizing element of K° !

Let \mathfrak{k} be an algebraically closed field of characteristic 0. It follows from the previous result that the field of Puiseux series, namely of series (2) for which the set of $l \in \mathbb{Q}$ with $f_l \neq 0$ is bounde from below and there is a positive integer n such that $nl \in \mathbb{Z}$ for all such l, is algebraically closed.

Twenty of the forty points available from this exercise sheet are bonus points which are disregarded in the calculation of the 50%-limit for passing the exercises.

Solutions should be submitted to the tutor by e-mail before Friday January 3 24:00.