Problem sheet 10 Rigid analytic geometry Winter term 2024/25

In the following problems let A be a Noetherian complete Tate ring, and let (A^{\sharp}, s) be a pair of definition for A. Let M and N be finitely generated $A^{"}$ =modules.

Problem 1 (3 points). For a subset $U \subseteq M$, show that the following conditions are equivalent:

- For every finitely generated A^{\sharp} -submodule $X \subseteq M$, there is $n \in \mathbb{N}$ such that $s^n X \subseteq U$.
- There is a finitely generated A^{\sharp} -submodule $X \subseteq M$ with $M = \bigcup_{n=0}^{\infty} s^{-n}X$ and such that $X \subseteq U$.

Problem 2 (3 points). Show that we have a unique structore of a nat-A-module on M for which U is a neighbourhood of zero if and only if it satisfies the equivalent conditions from the previous problem!

If M = A, it follows from Proposition 2.2.2 of the lecture (Problem 10 of sheet 8) that the topology from the previous problem coincides with the topology on A we started with.

From now on M will always be assumed to be equipped with this topology and N will be equipped with the anologous topology.

Problem 3 (2 points). If T is an arbitrary nat-A-module, show that a morphism of A-modules $M \to T$ is automatically continuous!

Problem 4 (3 points). If $\vec{m} = (m_i)_{i=1}^k$ generate M as an A-module, show that $A^k \xrightarrow{\vec{m}} M$ is continuous and M carries the quotient topology!

Problem 5 (4 points). Show that M is complete and has a countable neigbourhood base of 0! Moreover, show that the topology we have fixed on A is the only one with these properties!

Problem 6 (3 points). If N is a submodule of M, show that it is closed and its topology coincides with the one induced from M!

Problem 7 (2 points). If $M \xrightarrow{f} N$ is a surjective morphisms of A-modules, show that it is open!

Problem 8 (5 points). Let X be a spectral space and $\mathcal{X} \subseteq X$ a subset which intersects every non-empty constructible subset of X. We equip \mathcal{X} which the ordinary topology for which

$$\mathfrak{B} = \left\{ \Omega \cap \mathcal{X} \mid \Omega \in \mathfrak{Qc}(X) \right\}$$

is a topology base and with the G_+ -topology obtained by forcing the elements of \mathfrak{B} to be quasicompact. Construct a homeomorphism between X and \mathcal{X}^* !

Five of the 25 points from this sheet are bonus points.

Solutions should be e-mailed to my institute e-mail address (my second name (franke) at math dot uni hyphen bonn dot de) before Monday January 13.