Problem sheet 7 Rigid analytic geometry Winter term 2024/25

As at the end of the last sheet let (Y, \preceq) be a Priestley space and \mathfrak{B} the set of clopen subsets $\Omega \subseteq Y$ such that $y \in \Omega$ and $y \preceq v$ implies $v \in \Omega$. Then \mathfrak{B} is closed under finite intersections within Y, including the empty intersection Y. Let Y^s be Y equipped with the topology for which \mathfrak{B} is a topology base. The following finishes the proof that Y^s is a spectral space.

Problem 1 (3 points). Let $Z \subseteq Y^s$ be closed and irreducible. Show that Y contains a generic point.

Problem 2 (1 point). Show that \mathfrak{B} is the set of quasicompact open subsets of Y^s .

Problem 3 (3 points). Show that $Y \xrightarrow{Id_Y} (Y^s)_{con}$ is a homeomorphism.

In the following, the results of subsection 2.1 which have been fully shown or marked as trivial with an OK-hook in the lecture can of course be used. Let R be a topological ring, M a topological R-module and $X \subseteq M$ a bounded subset.

Problem 4 (3 points). If $Y \subseteq M$ is bounded, show that X + Y is bounded.

Problem 5 (2 points). If $M \xrightarrow{f} N$ is a morphism of topological *R*-modules, show that f(X) is a bounded subset of *N*.

Problem 6 (2 points). Show that a finite union of power-bounded subsets of R is power-bounded.

Problem 7 (2 points). Show that a bounded and topologically nilpotent subset of R is power-bounded.

Problem 8 (2 points). Let X and Y be topologically nilpotent subsets of R. Show that XY is topologically nilpotent.

Problem 9 (2 points). Let $X \subseteq R$ be power bounded and Y topologically nilpotent. Show that XY is topologically nilpotent.

Solutions should be e-mailed to my institute e-mail address (my second name (franke) at math dot uni hyphen bonn dot de) before Monday December 9.