
Two coordinate invariant computations:

[X̃, Ỹ ] = TX̃ Ỹ � TỸ X̃ = T · (TXY � TY X) = T · [X,Y ],

d!(X,Y ) = (TX!)(Y )� (TY !)(X) = d!̃(X̃, Ỹ ).

Axioms for the covariant derivative:

[X,Y ] = DXY �DY X (Symmetry)
TX(g(Y,Z)) = g(DXY,Z) + g(Y,DXZ) (Product Rule)

Koszul formula:
TZ(g(X,Y )) + TY (g(Z,X))� TX(g(Y,Z))+
g([X,Y ], Z)� g([Z,X], Y ) + g([Y,Z],X) = 2g(DY Z,X).

Local formula:
Subtract from the above product rule the local di↵erentiation
TX(g(Y,Z)) = (TXg)(Y,Z) + g(TXY,Z) + g(Y, TXZ) then insert:

DY Z := TY Z + �(Y,Z) and get
g(�(Y,Z),X) := (TZg)(X,Y ) + (TY g)(Z,X)� (TXg)(Y,Z)

= g(�(Z, Y ),X) (Symmetry of �).

Parallel vector fields along a curve: D
dtX � c(t) = 0. (They are a big help.)

Second derivatives of vector fields are not symmetric:

D2
X,Y Z �D2

Y,XZ =

(TX�)(Y,Z)� (TY �)(X,Z) + �(X,�(Y,Z))� �(Y,�(X,Z)).

The Riemann Curvature Tensor:

R(X,Y )Z := D2
X,Y Z �D2

Y,XZ.
Product Rule for (D2

X,Y �D2
Y,X):

(D2
X,Y �D2

Y,X)(A · B) = ((D2
X,Y �D2

Y,X)A) · B + A · (D2
X,Y �D2

Y,X)B.

Symmetries of the curvature tensor:
R(X,Y )Z = �R(Y,X)ZSkew Symmetry in the 1st pair

R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = 01. Bianchi Identity
g(R(X,Y )V,W ) = �g(R(X,Y )W,V )Skew Symmetry in the 2nd pair
g(R(X,Y )V,W ) = g(R(V,W )X,Y )Symmetry in both pairs
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Hypersurface Theory is the same as in the Riemannian case, except for
signs related to the normal N . Let F : M ! Rn, hh., .ii be a hypersur-
face immersion with hhN,Nii = ±1. Since we assume that the metric is
induced from Rn we di↵erentiate hhTF (Y ), TF (Z)ii�g(Y,Z) = 0 and since
F = F 1, . . . , Fn is a collection of n functions the above definitions apply:
D2F (X,Y ) = TX(TY F )� TDXY F . Hence

hhD2F (X,Y ), TZF ii+ hhTY F,D2F (X,Z)ii = 0.

Next we do the same +,+,� cyclic computation as for the Koszul formula
and, noting the symmetry D2F (X,Y ) = D2F (Y,X) we get a first result:
D2F (Y,Z) is normal:

2hhTXF,D2F (Y,Z)ii = 0, hence

D2F (Y,Z) = hhD2F (Y,Z), Nii/hhN,Nii · N.

Recall the definition of the shape operator (or Weingarten map, or second
fundamental tensor) and di↵erentiate 0 = hhN,TY F ii to relate the shape
operator and D2F (X,Y ):

TY N =: TF · S · Y
0 = hhTXN,TY F ii+ hhN,D2F (X,Y )ii, or

g(SX, Y ) = �hhN,D2F (X,Y )ii.

In particular, the shape operator is g-symmetric. Next, di↵erentiate the
definition of S, note the normal and the tangential component of the result
and get the Codazzi equation:

D2
X,Y N = D2

Y,XN = D2F (X,SY ) + TF ((DXS)Y )
(DXS)Y = (DY S)X.Codazzi Equation:

Finally di↵erentiate g(SY,Z)/hhN,Nii · N = �D2F (Y,Z) in direction X,
then interchange X,Y, subtract and simplify with Codazzi. The di↵erence
of the 3rd derivatives is simplified with this product rule:

0 = (D2
X,Y �D2

Y,X)(TZF ) = (D3
X,Y,Z �D3

Y,X,ZF ) + TF · R(X,Y )Z
to get the

g(SY,Z)SX � g(SX,Z)SY � hhN,NiiR(X,Y )Z = ~0.Gauss Equation:
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From the full curvature tensor one defines, by taking a trace, a simpler sym-
metric tensor that will be important for formulating the Einstein equations.

Definition of the Ricci tensor:

g(Ric Y, Z) = ric(Y,Z) :=
X

i

g(R(Y, ei)ei, Z)/g(ei, ei),

div (Ric) =
X
i,j

(Dej R)(ej , ei)ei/g(ej , ej)/g(ei, ei)

where {e1, . . . , en} is an orthogonal basis.

Constancy Theorems: Too simple situations become trivial!
S = f(p)id ) f = const.Umbilicity theorem
(DXS)Y = df(X) · Y = df(Y ) · Xwith Codazzi equation:

R(X,Y )Z = f(p)(g(Y,Z)X � g(X,Z)Y )Schur’s theorem (dim > 2)
) f = const.

(DUR)(X,Y )Z = df(U) · (g(Y,Z)X � g(X,Z)Y )

ric = f(p)g ) f = const.Einstein metric (dim> 2)

2. Bianchi Identity:
(DUR)(X,Y )Z + (DXR)(Y,U)Z + (DY R)(U,X)Z = 0
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The Jacobi Equation, a fundamental tool

Let s 7! c(s, t) be a family of geodesics, i.e. D
ds

d
dsc(s, t) = 0. Jacobi fields

along these geodesics are defined as s 7! d
dtc(s, t) =: Jt(s). Their 2nd order

linear ODE is obtained by interchanging derivatives, thus bringing in the
curvature tensor:

0 =
D

dt

D

ds

d

ds
c(s, t) =

D

ds

D

dt

d

ds
c(s, t) + R(

d

dt
c,

d

ds
c)

d

ds
c

=
D

ds

D

ds
Jt(s) + R(Jt(s), c0)c0.

Estimate the symmetric operator J 7! R(J, c0)c0 via its eigenvalues:

� · g(J, J)  g(R(J, c0)c0, J)  � · g(J, J),

which implies a second order di↵erential inequality:

d

ds
|J | = g(J,

D

ds
J)/|J |,

d

ds

d

ds
|J | = g(J,

D

ds

D

ds
J)/|J | + g(

D

ds
J,

D

ds
J)/|J | � g(J,

D

ds
J)2/|J |3

� �g(J,R(J, c0)c0)/|J | by Schwarz inequality
� �� · |J |.

The Jacobi equation controls also how the shape operator changes in a
geodesically parallel family of hypersurfaces. Let N(p(t)) be the normals
along a curve in the hypersurface and s 7! c(s, t) be the geodesics in these
normal directions and Jt(s) = d

dtc(s, t) the Jacobi fields of this family. The
Jacobi fields compute S and the curvature tensor controls how S changes:

D

ds
Jt(s) =

D

ds

d

dt
c(s, t) =

D

dt

d

ds
c(s, t) =

D

dt
N(c(s, t)) =

=S · d

dt
c(s, t) = S · Jt(s),

�R(Jt(s), c0)c0 =
D

ds

D

ds
Jt(s) = (

D

ds
S) · Jt(s) + S · D

ds
Jt(s) =

=(
D

ds
S) · Jt(s) + S · S · Jt(s).
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Normals of totally geodesic hypersurfaces are Eigenvectors of Ric

If an isometry has a hypersurface M as fixed point set, then M is totally
geodesic.

Variations of geodesics in M are tangential, therefore 2nd derivatives of
Jacobi fields are tangential, therefore R(J, c0)c0 is tangential, hence R(N, c0)c0
is proportional to N . Then, finally: N is eigenvector of Ric.

Jacobi fields have surprisingly many immediate physical interpretations.

Examples are: “Tidal forces of gravity”, “Perihelion advance of Mercury”,
various forms of “distance measurements”.
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Light cone geometry

While the light cones can be pretty complicated, much is similar to the
vector space.
1. A geodesic starting in a null direction remains a null geodesic:

d
dsg(�0(s), �0(s)) = 0.

2. Variations of null geodesics have: g( D
d✏�

0
✏(s), �0✏(s)) = 0 = g( D

dsJ✏(s), �0✏(s))
and g( D

d✏�✏(s), �0✏(s)) = g(J✏(s), �✏(s)) = 0 if this is true initially:
Jacobi fields remain tangential.

3. Tangent vectors to the light cone stay tangential when parallel translated
along null rays: d

dsg(u(s), �0(s)) = 0.
4. Parallel translation of null vectors along any curve c remain null:

d
dsg(u(s), u(s)) = 0.

5. Arbitrary Jacobi fields J along rays � can be split as parallel + tangential,
J = u + T .
Split J(0) = u(0) + T (0), g(T (0), �0(0)) = 0, extend u parallel and put
T (s) = J(s)� u(s).
Then d

dsg(T (s), �0(s)) = g( D
dsJ(s), �0(s)) = 0.

Under conformal changes of the metric, g̃(X,Y ) = ��2(P )g(X,Y ), null
geodesics remain null geodesics, possibly with a non-a�ne parametrization.

Assume D
ds�

0(s) = 0 and reparametrize: s = '(�), �̃(�) = �('(�)). Then
d

d� �̃(�) = �0('(�)) · '0(�) and
D

d�

d

d�
�̃(�) =

D

ds
�0('(�)) ·'0(�)2+�0('(�)) ·'00(�) = '00(�)/'0(�) · d

d�
�̃(�).

Vice versa, if D
d�

d
d� �̃(�) = m(�) · d

d� �̃(�) is given, then try to find � =  (s)
such that �(s) := �̃( (s)) satisfies D

ds�
0(s) = 0.

For this  (s) needs to solve the ODE  00(s) + m( (s)) ·  0(s)2 = 0.
Now let �(s) be a null geodesic for the metric g and change the metric
conformally to g̃( , ) = ��2(p) · g( , ). Then we have

D̃XY = DXY + �(X,Y ) = DXY � TX�

�
Y � TY �

�
X + g(X,Y ) · grad�

Therefore D
ds�

0(s) = 0 implies D̃
ds�

0(s) = �2 d
ds�(�(s))/�(�(s)) · �0(s), as

claimed.
The second order ODE for the reparametrization can in this case be inte-
grated once and we are left with the 1st order ODE to reparametrize �:

 0(�) = �2(�( (�))), �̃(�) := �( (�)).
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Next I have to explain redshift as a geometric notion.
(See Fraunhofer lines - the frequency ratios are the same for all objects in
the sky.)
Summary:
Let �✏(s) be a family of null geodesics which join the worldline of the sender
S to the worldline of the observer O and let J✏(s) = D

d✏�✏(s) be the corre-
sponding Jacobi fields. Let u, v be the timelike unit tangent vectors of the
world lines of S,O and assume J(0) = u (by scaling) and J(1) = µ · v. This
means:

Time signals which are sent with sender’s time di↵erence 1 are
observed with observers time di↵erence µ
i.e. �T (S)/�T (O) = 1/µ or for frequencies: !S/!O = µ.

We proved in 5. above that

g(u, �0(0)) = g(J(0), �0(0))
(5.)
= g(J(1), �0(1)) = g(µ · v, �0(1))

hence
1 + z :=

!S

!O
= µ =

g(u, �0(0))
g(v, �0(1))

.

Special Relativity Application:

�0 = (1, 0, 0, 1), u = (0, 0, 0, 1), v = (a, 0, 0, 1)/
p

1� a2, µ =
r

1 + a

1� a

Next, if we change the metric conformally, g̃(X,Y ) = ��2g(X,Y ), then we
get a very simple formula

!̃S

!̃O
=
!S

!O
· �(S)
�(O)

Note that unit vectors change as ũ(P ) = �(P ) · u(P ). The g-null geodesic
�(s), D

ds�
0(s) = 0 is still a null geodesic for g̃, but not with an a�ne parame-

trization. The reparametrization �̃(�) = �( (�)) satisfies  0(�) = �2(�̃(�)),
so that for example

g̃(ũ, �̃0(�0)) = ��2(S) · g(�(S)u, �2(S)�0(0)) = �(S) · g(u, �0(0)).
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Example 1: Schwarzschild Metric

M := (a, b)⇥ S2 ⇥ RAnsatz:
ds2 := d⇢2 + G2(⇢)d�2 � F 2(⇢)dt2 (later: F 0(⇢) > 0)
where d�2 is the standard metric on S2.

This Ansatz is intended to give a relativistic model of the empty space
outside a rotationally symmetric and static star. The star itsself is not part
of the model.
The worldline of a person standing, say, on the surface of the earth is given
by ⇢ and � being constant. The coordinate time t is not what atomic clocks
there would measure, but ⌧ = F (⇢) · t. Since F is an increasing function,
more measured time passes for clocks standing at larger ⇢.
• This means that distances measured via the travelling time of reflected
time signals give larger radial distances for the astronomers further out. –
We have used reflected radar signals to measure the distance to Venus.
The totally geodesic Riemannian submanifold {t = const} could be called
”our space”. But typical measurement procedures do not measure the Rie-
mannian distance. We perceive directions in our 3-dim space, but light
signals arrive via null-geodesics on our backwards light cone. We use the
unit tangent vector of our world line to relate directions in our space with
light rays.
• The best known distance measurement: Given two stars A,B; the distance
to A is known and B is one quarter as bright as A, then B is twice as far
away as A. This is easy to fit into the 4-dim picture: B is twice as far back
on our backwards light cone. This method needs a start.
• The most precise start comes from the 1987 supernova: That star was
surrounded by a huge disk of dust and the light of the explosion made the
disk shine bright. The disk was tilted towards our line of sight, therefore
we saw the closest part of the disk shine bright first and then could watch
until the whole disk was bright. By using the known speed of light one could
precisely compute the size of this disk. Measuring the angular size as seen
from earth gave the distance. – In the case of the Scharzschild geometry the
curvatures along the light cone have di↵erent sign, therefore known spherical
balls are seen as ellipses.
• The older method for starting the brightness comparison used parallaxe
measurments with a diameter of the earth orbit as base. Again, the 4-dim
computation depends on Jacobi fields along the light cone. In the presence
of curvature the measured distance depends on the orientation of the base.
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Determination of the functions G and F : for quantitative predictions

The hypersurfaces {⇢ = const} have the product metric G2(⇢)d�2�F 2(⇢)dt2

with hypersurface curvature 1/G2 tangential to S2 and hypersurface curva-
ture 0 for the e� ^ e4-planes. The eigenvalues of the shape operator are
obtained from Jacobi fields which are restrictions of Killing fields. These
Jacobi fields are obtained from variations in 2-dimensional totally geodesic
subspaces, which implies J(s)/|J(s)| is a parallel field. Therefore we do not
need Christo↵el symbols to compute (s = ⇢)

D

ds
(
D

ds
J(s)) = |J(s)|00 · J(s)

|J(s)| = �R(J(s), c0(s))c0(s), c0(s) = e1.

|J4(⇢)| = F (⇢), |J�(⇢)| = G(⇢).

R(e4, e1)e1 = �F 00(⇢)
F (⇢)

e4, R(e�, e1)e1 = �G00(⇢)
G(⇢)

e�.

S · e4 =
F 0

F
e4, S · e� =

G0

G
e�.

R(e2, e3)e3 = (
1

G2
� (

G0

G
)2)e2, R(e3, e2)e2 = (

1
G2

� (
G0

G
)2)e3,

R(e4, e�)e� = 0� (
G0

G
)(

F 0

F
)e4, R(e�, e4)e4 = 0� (�F 0

F
)(

G0

G
)e�.

Note that in the Gauss equations, because of g(Sy, y)Sx = �yg(y, y)�xx, it
matters which vectors are timelike and which are spacelike.
From the above curvature tensor data we obtain the eigenvalues of Ricci:

Ric(e1) = �1e1 = (�F 00

F
� 2

G00

G
) · e1,

Ric(e�) = ��e� = (
1

G2
� (

G0

G
)2 � G00

G
� F 0G0

FG
) · e�,

Ric(e4) = �4e4 = (�F 00

F
� 2

F 0G0

FG
) · e4.

⇤ = �1 = �� = �4. (|⇤| << 1 given constant)Einstein vacuum equations:

The Schwarzschild geometry is obtained by solving this ODE-system.
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, F 0

F
=

G00

G0 , (
F

G0 )
0 = 0 , F

G0 = const.(*1) : �1 = �4

By scaling the t-coordinate we can have const = 1, hence
F = G0.

This leaves only one function to be determined. Setting all three eigenvalues
equal and inserting F = G0 gives a third order ODE for G which we can
integrate twice for a first order ODE for G that contains two parameters,
one is the cosmological constant, the other will be called m for mass of the
central star.
(*2) : �� = (�4 + �1)/2

() 0 =
F 00

F
+

1
G2

� (
G0

G
)2 =

G000

G0 +
1

G2
� (

G0

G
)2

()
⇣
� 1

G2
+ (

G0

G
)2 + 2

G00

G

⌘0
= 2

G0

G

✓
G000

G0 +
1

G2
� (

G0

G
)2
◆

= 0.

If we compare the obtained first integral with ��, we find that the value of
this constant function is �⇤:

�
� 1

G2
+ (

G0

G
)2 + 2

G00

G

�
= �⇤.

We add the third order ODE and multiply by G2G0 to get
�G000

G0 + 2
G00

G

�
G2G0 = �⇤G2G0,

hence another constant function:�
G2G00 +

⇤
3

G3
�0 = 0.

m :=
�
G2G00 +

⇤
3

G3
�
,Define

m = G2G00 +
⇤
3

G3 =
G

2
(1�G02)� ⇤

6
G3.and observe

So we arrived at the desired first order ODE for G:

G02 = 1� 2m
G
� ⇤

3
G2

Note that this ODE implies the third order ODE and hence all other used
identities.
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We make the change to the historic coordinates r := G(⇢), dr = G0(⇢)d⇢
and recall that the historic Schwarzschild solution has ⇤ = 0. The metric is

ds2 = (1� 2m
r
� ⇤

3
r2)�1dr2 + r2d�2 � (1� 2m

r
� ⇤

3
r2)dt2.

Curvatures in terms of m,G
We have computed above the Jacobi part of the curvature tensor in terms
of F,G, now we use the ODE to compute these curvatures in terms of m,⇤.
Note (G0/G)(F 0/F ) = G00/G = m/G3 �⇤/3, (1�G02)/G2 = 2m/G3 +⇤/3
and �F 00/F = �G000/G0 = (1 � G02)/G2 = 2m/G3 + ⇤/3. To obtain in
addition to the six values already listed also R(e1, N)N with N one of the
totally geodesic hypersurface normals e4, e� used above, note that we proved
already R(e1, N)Ñ = 0 if N ? Ñ are any two of those normals. This says
that R(e1, N)N is a multiple of e1 and g(R(e1, N)N, e1) is already known.
This gives the following list

R(e4, e1)e1 = (2m/G3 +⇤/3)e4, R(e�, e1)e1 = (�m/G3 +⇤/3)e�,

R(e2, e3)e3 = (2m/G3 +⇤/3)e2, R(e3, e2)e2 = (2m/G3 +⇤/3)e3,

R(e4, e�)e� = (�m/G3 +⇤/3)e4, R(e�, e4)e4 = (+m/G3 � ⇤/3)e�,

R(e1, e�)e� = (�m/G3 +⇤/3)e1, R(e1, e4)e4 = (�2m/G3 � ⇤/3)e1.

Quotient Geometry
In particular, the eigenvalues of [R] agree up to sign.
The eigenvalues of [R] will depend on ~n1. We put

~n1 = (x⇢, x�, 0, xt) with (x⇢)2 + G(⇢)2(x�)2 � F (⇢)2(xt)2 = 0.
Next we choose two tangent vectors to the light cone through ~n1

~u := (0, 0, x3, 0) ? ~n1, ~v ? ~u, ~n1

Recall that R( ~X, ~Y )~Z = 0 if we insert three orthogonal vectors tangent to
the factors of M = (a, b)⇥ S2 ⇥ R. So we get

R(~u, ~n1)~n1 = (x⇢)2R(~u,~e1)~e1 + G(⇢)2(x�)2R(~u,~e2)~e2

+ F (⇢)2(xt)2(~u,~e4)~e4

=
3m
G

(x�)2 · ~u
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Accelerations, Christo↵el Symbol

On the underlying product manifold M = (a, b)⇥S2⇥R we have the product
metric d⇢2+d�2�dt2. We can work with its covariant derivative D⇥ without
introducing local coordinates on S2. We denote by �(., .) the di↵erence
tensor between the Schwarzschild covariant derivative D and D⇥:

DXY = D⇥
XY + �(X,Y ).

Again, � is computed with the (+,+,�) cyclic permutation trick:

TZ(g(X,Y )) = g(DZX,Y ) + g(X,DZY )

= g(D⇥
Z X,Y ) + g(X,D⇥

Z Y ) + (D⇥
Z g)(X,Y ).

With the notation X = (X⇢,X�,Xt), g(X,Y ) = X⇢Y ⇢ +G(⇢)2hX�, Y �i�
F (⇢)2XtY t

we have
(D⇥

Z g)(X,Y ) = 2G(TZG)hX�, Y �i � 2F (TZF )Xt · Y t,

TZG = G0(⇢) · Z⇢, TZF = F 0(⇢) · Z⇢

g(�(X,Y ), Z) =
1
2
�
� (D⇥

Z g)(X,Y ) + (D⇥
Xg)(Y,Z) + (D⇥

Y g)(Z,X)
�

Finally, the di↵erence tensor is

�(X,Y ) =

0
@FF 0XtY t �GG0hX�, Y �i

(G0/G)(X⇢Y � + Y ⇢X�)
(F 0/F )(X⇢Y t + Y ⇢Xt)

1
A

The first application is the radial acceleration of the Killing observers. Their
world lines are

�(s) := (⇢0, �0, s/F (⇢0)), �0(s) = (0, 0, 1/F (⇢0)),

D

ds
(�0(s)) =

0
@ 0

0
0

1
A+ �

0
@ 0

0
1/F (⇢0)

,
0
0

1/F (⇢0)

1
A =

0
@ (F 0/F )(⇢0)

0
0

1
A ,

and more explicitly in the Schwarzschild geometry

F 0

F
(⇢) =

G00

G0 (⇢) =
m/G2 � (⇤/3)Gp

1� 2m/G� (⇤/3)G2
(⇢) =

�����
⇤=0

m

G2

1p
1� 2m/G

(⇢).
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Circular Planetary Observers, Kepler’s 3rd law

For the world lines of circling observers we have
(with �⇢(.) a great circle in S2)

�(s) = (⇢, �⇢(s), 0, ⌧(⇢) · s), �0(s) = (0, !(⇢), 0, ⌧(⇢)) with

� 1 = g(�0(s), �0(s)) = G2(⇢)!(⇢)2 � F 2(⇢)⌧(⇢)2.

The world line of an infinitesimal planet is in addition geodesic, i.e.

D

ds
�0(s) =

0
@ 0

0
0

1
A+ �(�0(s), �0(s))

=

0
@FF 0(⇢)⌧(⇢)2 �GG0(⇢)!(⇢)2

0
0

1
A (!)

=

0
@ 0

0
0

1
A

The geodesic condition, with proper time parameter s and using G0 = F ,
therefore is:

GG00(⇢)⌧(⇢)2 �G(⇢)2!(⇢)2 = 0, G0(⇢)2⌧(⇢)2 �G(⇢)2!(⇢)2 = +1,
which gives for the constants in �0 :

⌧(⇢)2 = (G0(⇢)2 �GG00(⇢))�1 = (1� 3m
G

)�1,

!(⇢)2 = ⌧(⇢)2
G00

G
(⇢) =

(m/G3 � ⇤/3)
(1� 3m/G)

�����
⇤=0

=
m

G3
(1� 3m

G
)�1.

We compare these results with Kepler’s third law – presently under the
agreement that a Killing observer signals when orbits are completed (see
next lecture):

(Proper Period Time, Planetary Clock)2 =
⇣ 2⇡
!(⇢)

⌘2
=

4⇡2

m
G3
⇣
1� 3m

G

⌘
,

2m for the sun can be computed from this equation:
Tunit = 3.3 ·10�6sec, 1year = 9.46 ·1012Tunits, Gearth = 1.5 ·108km =)
2m = 3 km.
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Example 2: The standard cosmological model

The Einstein Equation

8⇡T = G +⇤id .

For the Ricci Tensor I use di↵erent names for its bilinear version: ric(v, w)
and its 1-1-Tensor version: Ric(v), and of course: ric(v, w) = g(Ric(v), w).
The divergence free part of the Ricci Tensor is the Einstein Tensor G:

G := Ric� 1
2
(traceRic) · id , traceG = �traceRic, dim = 4.

Stress-Energy Tensor of Perfect Fluid :

T · W = (p · W + (⇢+ p)g(U,W ) · U.

The time unit vector field U determines the rest frame of the fluid.

Use the Einstein equation to get Ric from T :

trace (G) = 8⇡ · trace (T )� 4⇤

Ric = G� 1
2
(traceG) · id = 8⇡T � 4⇡ · trace (T )id + (2� 1)⇤id

Ric(U) = (⇤� 4⇡(⇢+ 3p)) · U, Ric
��
U? = (⇤ + 4⇡(⇢� p)) · id

��
U? .

By looking at the Ricci tensor we can now recognize whether some Lorentz
manifold has as its matter content a perfect fluid. The quadratic examples
of lecture 2 do not model such type of matter.

A Lorentz manifold with such a Ricci tensor is still more general than the
standard model. We need more input from observations.
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Immediate consequences of div (T ) = 0

Recall that, when Einstein wrote down the above field equation, physicists
had already met stress energy tensors of materials and they were convinced
that T would be divergence free for all materials. Therefore Einstein con-
structed the right side of the equation to be divergence free. We learn some
facts about perfect fluids by computing the divergence of T :

div (T ) :=
X

i

(DeiT ) · ei

g(ei, ei)
=) g(div (T ),W ) =

X
i

g((DeiT ) · W, ei)
g(ei, ei)

g(div (T ),W ) = TW p + (p + ⇢)g(W,DUU) + g(W,U)div ((p + ⇢)U).

If we use div (T ) = 0 and apply this computation for W ? U , then we get

DUU = �(grad p)/(p + ⇢), grad = grad Restspace

in particular, in the case of dust, we get geodesic world lines for the dust
particles. In general the acceleration is caused by the pressure gradient (in
the rest space).
If we use the computation for W = U in the dust case, we get div (⇢ ·U) = 0,
a conservation of mass result.

15



A Schur Theorem for conformally flat perfect fluids
Lemma: A conformally flat perfect fluid is curvature isotropic.

We write more explicitly what we mean by “curvature isotropic with re-
spect to U”, i.e., by the property that the curvature tensor distinguishes no
directions in the rest spaces U? of the matter – in agreement with observa-
tions. Clearly, such a curvature tensor has to have the following properties:

X,Y,Z ? U =) R(X,Y )Z = k(p)(g(Y,Z)X � g(X,Z)Y ),
R(X,U)U = µ(p) · X,

R(X,Y )U = 0,with the immediate consequences:
R(U,X)Y = �µ(p) · g(X,Y ) · U.

(Note that g(R(U,X)Y,Z) = 0 for all Z ? U and g(R(U,X)Y,U) =
g(R(X,U)U, Y ).)
This is enough information to check that any curvature isotropic curvature
tensor has its Weyl conformal curvature tensor vanish. Moreover, we find
for the Ricci tensor (of such a curvature tensor):

ric(U,U) = 3µ(p) = ��U = (�⇤+ 4⇡(⇢+ 3p))
ric(U, Y ) = 0
ric(X,Y ) = (2k � µ)g(X,Y ) = �U? = (⇤ + 4⇡(⇢� p)).

This shows that the eigenspace decomposition is the correct one for a perfect
fluid (we also need to satisfy 0  3p  ⇢). Note:

6k � 2⇤ = 16⇡⇢, 4µ� 2k + 2⇤ = 16⇡p, µ + k = 4⇡(p + ⇢).

Theorem of Schur type. Let M4 be curvature isotropic for a time like
unit vector field U so that M4 models a perfect fluid. We also assume
⇢ > 0, since otherwise one cannot everywhere define the local rest frame of
the matter, namely U,U?. Then:
a) U? is an integrable distribution.
b) The 3-dim integral manifolds have intrinsically constant curvature.
c) A matter equation F (p, ⇢) = 0, @

@pF =/ 0 implies DUU = 0 so that
extrinsically these integral manifolds are parallel hypersurfaces with
the matter world lines as the orthogonal geodesics.

This shows: if ⇢, hence k, are not konstant then the levels of ⇢ are the
integral manifolds of the distribution U?.

One may look for a cosmological model assuming these conclusions without
obtaining them first as a Pseudo-Riemannian theorem.
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Model assumptions, for Friedman-Robertson-Walker universes:

Matter content.
The matter of the model is a perfect fluid. Mostly we assume
the matter equation for dust, p = 0. To illustrate how the type
of matter changes the model we will also deal with the matter
equation for a photon gas, 3p = ⇢.

Symmetry.
Other observers on matter world lines should see the universe as we
do, and, roughly speaking, the observations do not distinguish spe-
cial rest space directions (i.e. orthogonal to matter world lines). We
turn this into the assumption: the curvature tensor distinguishes
no directions in the rest spaces.

Ansatz.
From these assumptions we concluded that the matter world lines
are geodesics and that the orthogonal distribution is integrable, giv-
ing space slices of constant intrinsic and extrinsic curvature. This
foliation also defines a global time function ⌧ and the curvatures
as well as ⇢ and p depend on ⌧ .
The underlying manifold therefore is

M4 = M3
 ⇥ (a, b),

with (a, b) to be determined and M3
 a space of constant curvature .

M4 has a warped product metric (prefered Ansatz in Physics)
ḡ = a2(⌧)g(., .)� d⌧2.

We introduce a new time function t and define what will turn out to be the
conformal factor:

dt :=
d⌧

a(⌧)
and �(t) := a(⌧(t))�1. d⌧ =

dt

�(t)
. Note �(today) = 1.

This transforms the above Ansatz metric in a conformally flat form:

ḡ = a(⌧)2g � d⌧2 = �(t)�2(g � dt2).

From the definition of t, �(t) follows (with d
d⌧ h(⌧) = h0(⌧), d

dth(t) = ḣ(t)):

a0

a
(⌧) = ��̇(t),

a00

a
= ���̈+ �̇2.

These relations su�ce to translate the (Einstein) di↵erential equations for
a(⌧) into di↵erential equations for �(t). But we will derive the equations for
�(t) from scratch.
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Einstein equations for the conformally flat cosmological model

Curvature tensor, Ricci tensor and Einstein tensor for the product metric
g = g � dt2 are easily obtained (observe that U is globally parallel for g):

R(⇤, ⇤)U = 0, R(X,Y )Z = (g(Y,Z)X � g(X,Z)Y ),

Ric(U) = 0, Ric(X) = 2X,
1
2
trace (Ric) = 3,

G(U) = �3U, G(X) = �X, with g(U,X) = 0.

For the conformally changed metric ḡ = ��2g we compute the Einstein
tensor with the conformal-change-formula at the end of last lecture.
Note grad g� = ��̇U, Dgrad g� = ��̈g(U, .)U

(G +⇤)(X) =
�
�2(�+ 0� 3�̇2

�2
+

2�̈
�

) + ⇤
�
X

(!)
= pX

(G +⇤)(U) =
�
�2(�3� 2�̈

�
� 3�̇2

�2
+

2�̈
�

) + ⇤
�
U

(!)
= �⇢U

This gives the di↵erential equations:

2��̈� 3�̇2 � �2 +⇤ = 0,(Einstein-p)
⇢(t) = 3�̇2 + 3�2 � ⇤ = 2�2 + 2��̈.(Einstein-⇢)

⇢̇ = 6�̇(�+ �̈) = 3
�̇

�
(2�2 + 2��̈) = 3

�̇

�
⇢,Hence:

⇢(t) = ⇢(T ) · �(t)3, Abbreviate T := today henceforth.and:

As in the first description ⇢(t) scales expectedly with �(t)3 so that scaling
sizes of space slices that intersect matter world lines at �(t) can equivalently
be expressed in terms of matter densities, more precisely ⇢(t)1/3, along �.
The just established fact that ⇢(t)�(t)�3 is a constant translates into a first
order ODE for � (namely: (3�̇2 + 3�2 � ⇤)��3 = ⇢(T ) ) that has the two
Einstein equations we started with as consequences:

0 =
d

dt
(
1
3
⇢(t)�(t)�3) =

d

dt

�
�̇2��3 + ��1 � ⇤

3
��3

�
= 2�̇�̈��3 � 3�̇3��4 � �̇��2 +⇤�̇��4

= �̇��4
�
2��̈� 3�̇2 � �2 +⇤

�
= 0.
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So finally we have reached

The Equation of the Cosmological Model

�̇2 =
⇢(T )

3
· �3 � �2 +

⇤
3

, ⇢(t) = ⇢(T ) · �(t)3,

g =
1
�2

(g � dt2) =
✓
⇢(T )
⇢(t)

◆2/3

· (g � dt2).

For ⇤ =/ 0 this ODE for �(t) is the ODE of an elliptic function while for
⇤ = 0 an explicit integration in terms of elementary transcendental functions
is possible. We therefore assume in the following ⇤ = 0 whenever reference
to the explicit solution is made. We use abbreviations for sin(

p
 t)/

p
 and

similar functions as follows:

s00 + s = 0, s(0) = 0, s0(0) = 1. Note: (s0)2 + s2
 = 1

c00 + c = 0, c(0) = 1, c0(0) = 0. (c0)2 + c2
 = 

c = s0

Summary. In the case ⇤ = 0 we have the following explicit solution of
the model ODE:

�(t) := s(
T � t0

2
)2 · s(

t� t0
2

)�2 (Recall T = today),

⇢(T ) = 3s(
T � t0

2
)�2, ⇢(t) = 3s(

T � t0
2

)4 · s(
t� t0

2
)�6,with

ḡ = ��2 · (g � dt2).

Here t0 is the time where the mass density becomes infinite. There is no
harm in setting t0 = 0. To prove the claim compute (�̇)2/�2 +  with
the help of (s0)2 + s2

 = 1 and find it equal to (s(T/2)�2 · �(t), hence
⇢(T )/3 = s(T/2)�2.

As a first observation we have a Big Bang prediction.
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Red Shift prediction

For the physically unimportant product metric g = g � dt2 we have that
the vector field U is a time like Killing field of constant length. Therefore
we have no red shift between observers represented by the integral curves of
U . Under the conformal change to the physically relevant metric ḡ = 1

�2 g
these integral curves become the world lines of the matter particles of that
model. We have computed the red shift caused by a conformal change and
found:

1 + z =
!Source

!Observer
=

�(t)
�(T )

=
a(⌧ = today)

a(⌧(t))
=

s(T/2)2

s(t/2)2
=
✓
⇢(t)
⇢(T )

◆1/3

.

This has an immediate interpretation: The red shift of light received from
‘distant’ galaxies tells us how much denser the universe was at time t of
emission than at time T = today of reception. Since t is unknown this is
not a quantitative prediction.

We look at another matter equation, at a photon gas, ⇢ = 3p. If we
insert this into the above eigenvalue computations for the Einstein tensor in
the conformally flat description we get

⇢(t)
3

= p(t) = 2��̈� 3�̇2 � �2 +⇤,(1)

⇢(t) = 3�̇2 + 3�2 � ⇤,(2)
4
3
⇢ = 2��̈+ 2�2.(1) + (2)

0 =
d

dt

 
�̇2

�4
+



�2
� ⇤

3�4

!
=

d

dt

⇢(t)
3�(t)4

,((1)� (2)/3)�̇/�5

⇢̇ = 6�̇(�+ �̈) = 4
�̇

�
⇢.Di↵erentiating (2)

⇢(t) = ⇢(T ) · �(t)4.Finally:

Again we end up with a first order ODE for the scaling function �(t), but
a di↵erent power dependence, ⇢(t) ⇠ �(t)4, than for dust. Vice versa, this
power law for ⇢ and the first order ODE for �(t) imply the two Einstein
equations (1) and (2).
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For comparison with the literature we need to discuss the model pa-
rameters. One parameter is the cosmological constant ⇤, but I do not
know how to discuss its connection with observations. Our Ansatz had
todays space slice curvature  as one model parameter, and the integra-
tion gave a second parameter, either the age T of the universe or equiva-
lently the matter density today, ⇢(T ). None of these parameters is used in
the literature. The expanding universe discussion suggests why the Hubble
function(⌧) = a0(⌧)/a(⌧) = ��̇(t) was defined. Its value today is the Hubble
Constant H. It is one of the most prominent astronomical constants and it
is one of the usual model parameters. We have:

H2 := �̇(T )
2 (ODE)

= �+
⇢(T ) + ⇤

3

���
⇤=0

=
✓

ṡ

s
(T/2)

◆2

= �+
1

s2
(T/2)

.

One can introduce H instead of any of the other parameters to specify the
model in the family. The second model parameter in the physics literature
also comes from sympathy for Taylor approximations. The parameter is
called acceleration parameter q and defined via a00|today:
(recall a00/a = ���̈+ �̇2 and 2��̈ = 3�̇2 + �2 � ⇤ = ⇢(t)� 2�(t)2)

q := �a00

a

��
today

· 1
H2

=
�̈

�

✓
�

�̇

◆2

� 1 =
1

2�̇2
(�̇2 + �2 � ⇤)

=
1

6H2
(⇢(T )� 2⇤),

(2q � 1)H2 = � ⇤.

With these equations one can choose, in terms of which parameters one
wants the model to be specified. To me, H and ⇢(T ) seem closest to direct
observations.
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Killing Fields

A map A : M ! M is called a Pseudo-Riemannian isometry (often Lorentz
isometry for short) if it satisfies for arbitrary tangent vectors Y,Z

g(TA · Y, TA · Z) = g(Y,Z).

Let At be a family of Lorentz isometries with A0 = id.

X(p) :=
@

@t
At(p)|t=0.Definition of a Killing field

The covariant di↵erential DX of a Killing field is a skew-symmetric endo-
morphism field, i.e. g(DY X,Y ) = 0. And vice versa, the flow of a vector
field X with skew-symmetric DX consists of Lorentz isometries.

Choose a curve p(s), p(0) = p, p0(0) = Y . Then

0 =
d

dt
g(TAt · Y, TAt · Y )|t=0 = 2g(

D

dt

� d

ds
At(p(s))|s=0

�
, TAt · Y )|t=0

= 2g(
D

ds

� d

dt
At(p(s))|t=0

�
|s=0, Y )

= 2g(
D

ds

�
X(p(s)

�
|s=0, Y )

0 = = 2g(DY X(p), Y ).

Conserved Quantities. If X is a Killing field and � is a geodesic (for
example a force free world line) then

g(X(�(s)), �0(s)) = const

Proof: d
dsg(X(�(s)), �0(s)) = g( D

dsX(�(s)), �0(s)) + g(X(�(s)), D
ds�

0(s)) = 0.

We will have to discuss the question: why do we observe conserved quantities
even though our cosmological Lorentz manifold has no Killing fields. The
following will be needed.

Second Order PDE for Killing Fields.
The flow of a Killing field moves each geodesic through a family of geodesics,
so that the restriction of a Killing field to any geodesic is a Jacobi field. That
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means, for every tangent vector of a geodesic, �0, the Killing field X has to
satisfy

D2
�0,�0X + R(X, �0)�0 = 0

Hence we have for all tangent vectors Y,Z

D2
Y +Z,Y +ZX + R(X,Y + Z)Y + Z = 0,

D2
Y,Y X + R(X,Y )Y = 0, D2

Z,ZX + R(X,Z)Z = 0,

D2
Y,ZX + D2

Z,Y X + R(X,Y )Z + R(X,Z)Y = 0,by subtraction

D2
Y,ZX �D2

Z,Y X = R(Y,Z)X,by definition

2D2
Y,ZX + R(X,Y )Z = R(Z,X)Y + R(Y,Z)X,by addition

D2
Y,ZX + R(X,Y )Z = 0.with 1.Bianchi

Remark. If one tries to construct X by solving Jacobi equations along
radial geodesics, then one can guarantee the correct second derivative of
X only in the direction of those geodesics – while the second order PDE
(derived above) requires much more.
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Quotient Geometry on the Light Cone.

The induced metric on any light cone LC is degenerate: let c(s) be a null
geodesic on LC, then we have for all v 2 Tc(s)LC that g(c0(s), v) = 0. It is
therefore useful to introduce the quotient geometry by defining

[v] := v + Rc0(s).equivalence classes:

We have a well defined positive definite scalar product on the quotient of
Tc(s)LC:

g([v], [w]) := g(v + �c0, w + µc0)
= g(v, w) + �g(c0, w) + µg(v, c0) + �µg(c0, c0) = g(v, w).

We have a covariant derivative on the quotient bundle along c(s):
Let [v](s) = [v(s) + �(s)c0(s)] then we can define
(with ( D

dsv(s))tang denoting the LC-tangential component of D
dsv(s) )

D

ds
[v](s) := [(

D

ds
v(s))tang + �0(s)c0(s)] = [(

D

ds
v(s))tang]

and hence have
d

ds
g([v](s), [w](s)) =

d

ds
g(v(s), w(s)) = g(

D

ds
v(s), w(s)) + g(v(s),

D

ds
w(s))

= g(
D

ds
[v](s), [w](s)) + g([v](s),

D

ds
[w](s)).

Since R(v + �c0, c0)c0 = R(v, c0)c0 2 Tc(s)TC we can define

[R]([v], c0)c0 := [R(v + �c0, c0)c0],

so that [R] is a symmetric operator on the 2-dimensional quotient space at
c(s). Finally, since a tangential Jacobi field J(s) has a tangential covariant
derivative, we have the twodimensional quotient Jacobi equation

D

ds
(
D

ds
[J(s)] + [R]([J ](s), c0)c0 = 0.

The two eigenvalues of [R] will be important for measurement discussions.
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