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Chapter 0

Introduction

0.1 Motivation

0.1.1 A_.-algebras

An A -algebra is a Z-graded module A together with maps my: A®¥ — A of degree 2 — k
for k > 1 that satisfy generalised associativity relations. In particular, one has mym; = 0, i.e.
my is a differential. Thus complexes are special cases of A.-algebras with my = 0 for & > 2.
Another special case are differential graded algebras, which are A.-algebras with mg = 0 for
k> 3.

0.1.2 A_-categories

One can generalise A-algebras to A-categories, just as monoids can be generalised to
categories. For instance, given morphisms a;: xg — 21, a2: 1 — x2 and asz: r9 — T3, we
obtain a morphism (a; ® as ® ag)mg from xy to z3. Again, the maps my for k > 1 are required
to satisfy generalised associativity relations.

0.1.3 A_-categories preserve cohomological information

Let B be an algebra over a field and let M1, ..., M, be B-modules. For each i we choose a
projective resolution P; of M;. Then we can define a differential graded category with objects
given by the numbers 1,...,n and with Hom(i, j) given by the complex of graded linear maps
P; — P; of arbitrary degree with differential

6= fdp, — (~1)Pdp,f

for a graded linear map f: P; — P; of degree p.

By a theorem of Kadeishvili there exists a minimal model for this differential graded category.
This minimal model is an A.,-category that has also the numbers 1,...,n as objects, but it
has Hom(¢, j) = Extp(M;, M;) with zero differential. There is an A,-quasiisomorphism from
the minimal model to the original differential graded category. In this situation, the minimal
model is unique up to Ay-isomorphism.



Our minimal model (Extpz(M;, Mj)); ; has the Yoneda product as multiplication map ms. In
general, the higher multiplication maps my for £ > 3 are non-zero, i.e. the minimal model is
not a differential graded category.

One can recover the full subcategory of B-Mod consisting of those B-modules that have a
filtation with all subfactors in {Mj, ..., M,} from the A,-category via the filt-construction,
cf. [Kel01, §7.7] and [Lef03, §7.4].

If we generalise from a ground field to a commutative ground ring, not every differential graded
category has a minimal model in the sense described above. In [Sagl0] and [Sch15] versions of
A o-categories over a commutative ground ring are considered that allow minimal models in a
suitable sense.

0.2 Problems

In what follows, we consider a commutative ground ring R.

0.2.1 The grading formalism

We introduce the notion of a grading category and graded modules over a grading category, cf.
Definitions 3 and 6. A grading category is a category Z with additional data. A Z-graded
module is a tuple M = (M?)_cnor(z) of modules M=.

For instance, we may let Z = Z, where the integers Z are regarded as a category with one
object and morphisms Mor(Z) = Z with addition as composition. This gives Z-graded modules
in the classical sense. An A .-algebra over Z is an A,.-algebra in the classical sense.

But we may also let Z = Z x Pair(X), where Pair(X) is the pair category over a set X, cf.
Definition 5. Then an A-algebra over Z is an A.-category with set of objects X.

In what follows, we fix a grading category Z. Unless stated otherwise, graded means Z-graded.
To a differential graded module we shall also refer as a complex.

0.2.2 The Bar construction

Consider the categories Ayo-alg of A-algebras and dgCoalg of differential graded coalgebras.
The Bar functor is a full and faithful functor

Bar: Ag-alg —— dgCoalg.

Given an Ay -algebra A, the differential graded coalgebra Bar A is a tensor coalgebra T Al
with a differential that depends on the multiplication maps on A.

So the image of Bar is the category dtCoalg of differential graded coalgebras whose underlying
graded coalgebra is a tensor coalgebra, called differential graded tensor coalgebras, cf. §1.3.3.
Thus the category Asc-alg is equivalent to the category dtCoalg.

0.2.3 The aim

We want to construct and study the homotopy category of A,,-algebras. That is, we want to
define a notion of homotopy, i.e. a congruence relation on the category A ,-alg. As complexes



are special cases of A,.-algebras, this homotopy notion should have the usual notion of complex
homotopy as a special case.

Morphisms of Ac-algebras are tuples (fi)r>1 of graded linear maps satisfying certain equations.
In particular, the component f; is a complex morphism, i.e. fim; = my fi. Prouté’s theorem
states that over a ground field a morphism of A.-algebras is an A,,-homotopy equivalence if
and only if f; is a quasiisomorphism of complexes, cf. [Pro84, Théoreme 4.27], see also [Kel01,
Theorem in §3.7] and [Sei08, Corollary 1.14].

The naive generalisation to a commutative ground ring R fails, as quasiisomorphisms of
complexes of R-modules do not need to be homotopy equivalences of complexes. We want to
give a suitable generalisation of Prouté’s theorem that characterises homotopy equivalences
over a commutative ground ring.

0.3 Results

0.3.1 An A_-category of coderivations

Let A and B be graded modules. Consider the tensor coalgebras T'A and T'B. Write A for the
respective comultiplication. Suppose given differentials such that T'A and T'B form differential
graded coalgebras. Then T'A and T'B are objects in dtCoalg, i.e. differential graded tensor
coalgebras.

For morphisms of differential graded coalgebras f,g: TA — T B we define the notion of
an (f, g)-coderivation, cf. Definition 34. Such an (f, g)-coderivation is a graded linear map
h: TA — TB of some degree that satisfies

hA =A(f@h+h® g).

Let dgCoalg(T'A, T B) denote the set of morphisms of differential graded coalgebras between
TA and TB. Consider the grading category Zrarp := Z x Pair(dgCoalg(T'A,TB)). Let
Coder(T A, TB) be the 274 rp-graded module such that Coder(T'A, T B)P(/9) is the module
of (f, g)-coderivations of degree p for (p, (f,g)) € Mor(Zrarn).

The following theorem is our version of various theorems in the literature, established by
Fukaya [Fuk02, Theorem-Definition 7.55], Seidel [Sei08, §1d], Lefevre-Hasegawa [Lef03, Lemme
8.1.1.4] and Lyubashenko [Lyu03, Proposition 5.1] in various degrees of generality.

Theorem 49 There is a structure of an A -algebra on Coder(T A, T B) such that the corre-
sponding differential M on T Coder(T A, TB) fits into a certain commutative square.

One can interpret the A-algebra Coder(T'A, T B) as an A.-category with objects given by
morphisms of differential graded coalgebras and morphisms given by coderivations between
them.

This Ayo-structure has been constructed by Fukaya, Seidel and Lefevre-Hasegawa in the case
of R being a field and without making use of the Bar construction. Lyubashenko translates it
to the context of dtCoalg, which simplifies the resulting formulas. We characterise them via
the mentioned commutative square.



0.3.2 Construction of the homotopy category

Let TA and T'B be differential graded tensor coalgebras. Let f,g: TA — T'B be morphisms
of differential graded coalgebras.

A coderivation homotopy from f to g is an (f, g)-coderivation h: TA — T'B of degree —1
that satisfies f — g = hmpa + mrph, where mr4 and mrp denote the differentials on T'A
and T'B respectively. The morphisms f and g are called coderivation homotopic if there is a
coderivation homotopy from f to g.

Theorem 63 Being coderivation homotopic is a congruence on dtCoalg.

Via the Bar construction, it also defines a congruence on the category A.-alg of As-algebras.
We obtain the equivalent factor categories dtCoalg and As.-alg.

Note that if h is a homotopy from f to g, then —h is in general not a homotopy from g to f,
as it may not be a (g, f)-coderivation. Similarly, if A’ is a homotopy from f to f’ and h” a
homotopy from f’ to f”, then b’/ + h” is in general not an (f, f”)-coderivation and thus not a
homotopy from f to f”. In both cases, correction terms are needed.

To prove this theorem, we essentially translate the arguments in Seidel’s book, cf. [Sei08, §1h],
to our context. More precisely, we work over a commutative ground ring and give explicit
formulas for all construction on the differential graded coalgebra side of the Bar construction.
The A,.-category of coderivations is used in the proof to produce the required correction
terms.

0.3.3 A generalisation of a theorem of Prouté

A morphism of A,-algebras f in A.-alg is called an A, .-homotopy equivalence if its residue
class [f] is an isomorphism in A,.-alg.

Theorem 79 A morphism of Ax-algebras f is an Ao-homotopy equivalence if and only if its
first component f1 is a homotopy equivalence of complexes.

Over a ground field, quasiisomorphisms of complexes are precisely the homotopy equivalences
of complexes. Hence this theorem generalises Prouté’s theorem.

In fact, we have a functor V': dtCoalg — dgMod from the category of differential graded
tensor coalgebras to the category of differential graded modules, i.e. complexes, mapping
(f: TA— TB) — (f|5: A— B). The functor V induces a functor V between the respective
homotopy categories, cf. Lemma 68. We obtain the following commutative diagram of functors,
where the vertical functors are the residue class functors.

Aoo-alg —22 5 dtCoalg —~— dgMod

J |,

A-alg ——— dtCoalg v dgMod

The above theorem states that V reflects isomorphisms.

We give examples that show that V is in general neither full nor faithful, c¢f. Remark 81.



0.3.4 The homotopy category as a localisation

We show that two coderivation homotopic maps in dtCoalg fit into a certain commutative
diagram involving coderivation homotopy equivalences. We use this diagram to show that
any functor dtCoalg — D that maps homotopy equivalences to isomorphisms has to map two
coderivation homotopic maps to the same morphism. Hence we obtain the following theorem.

Theorem 92 The category dtCoalg is the localisation of dtCoalg at the set of coderivation
homotopy equivalences.

Using the Bar construction, it follows that Ay-alg is the localisation of Ax-alg at the set of
A o-homotopy equivalences.

0.4 Relations to work of Lefevre-Hasegawa

Lefevre-Hasegawa constructs in his thesis [Lef03] a model structure on a full subcategory of
certain differential graded coalgebras over a ground field. The construction is based on work of
Hinich, cf. [Hin97]. The bifibrant objects of this model structure turn out to be the differential
graded tensor coalgebras, i.e. the objects dtCoalg.

He then shows that the homotopy notion of this model structure coincides with the one
given by coderivation homotopy, which proves that coderivation homotopy is a congruence.
Moreover, the weak equivalences of this model structure are the A,.-quasiisomorphisms, hence
Prouté’s theorem and the theorem on localisation above also follow from Lefévre’s model
structure over a ground field.

In the proof of our generalisation of Prouté’s theorem, cf. §3.2, we make use of arguments
inspired by Leféevre’s work without actually constructing a full model structure. In particular,
we translate some of Lefevre’s lemmas to our context, but reprove them to show that they
also hold over a commutative ground ring.

To construct a full model structure that has dtCoalg as bifibrant objects, one would have
to introduce a subcategory dtCoalg C X C dgCoalg that would presumably require a rather
technical definition. It is more convenient to only consider dtCoalg.

0.5 Conventions

Sets and functions

e Composition of morphisms is written on the right, i.e. the composite of f: X — Y and
g:Y — Z is denoted by fg: X — Z.

e If f: X — Y is a map between sets, we write xf for the image of x € X under f.

e We write Z for the ring of integers.

Categories and functors

o Given a category C, we write Ob(C) for the set of objects and Mor(C) for the set of
morphisms of C.



e The opposite category of € is denoted by C°P.

o We write idy: X — X for the identity morphisms on an object X € Ob(C) in a category
C. We often omit the index and write id := idx.

o Given a category C and two objects X,Y € Ob(C), we write C(X,Y) for the set of
morphisms from X to Y.

o A functor from C°P to D is also called a contravariant functor from € to D.

e Composition of functors is written on the left, i.e. the composite of F': € — D and
G:D — & is denoted by Go F': € — €.

e Given a functor F': € — D and a morphism f: X — Y in €, we write F'f: FX — FY
for its image under F' in D.

Modules and linear maps

e All modules are left modules over a commutative ring R. Given r € R and m € M,
we also write mr := rm, i.e. we consider left modules as right modules with the same
R-operation.

e We usually fix a commutative ring R and write module for R-module and linear map for
R-linear map. Moreover, tensor products are always considered as tensor products over
the ground ring R.

o Given two modules M and N, we write Hom(M, N) for the set of linear maps from M

to N.

Graded modules and graded linear maps (see also §1.2)

Let Z be a grading category, see Definition 3 below.

o Suppose given a Z-graded linear map f: M — N of degree p € Z and z € Mor(2).
Given m € M?, we often write mf := mf? € N*P!, i.e. we omit the degree on f.

e A Z-graded linear map f: M — N of degree p € Z is called injective, surjective resp.
bijective, if f%: M* — N?PPl is an injective, surjective or bijective linear map for all
z € Mor(2).

o We write grHom(M, N) for the set of Z-graded linear maps between the Z-graded modules
M and N.

10



Chapter 1

Preliminaries

1.1 Adjunctions

F
Let € = D be a pair of functors F' and G between categories € and D.
G

We recall the property of adjointness with its equivalent characterisations by a natural
isomorphism between hom-sets, unit and counit and a natural transformation with a universal

property.

Definition 1 We call F left adjoint to G (or G right adjoint to F) if there is a natural
isomorphism

in the category of functors from C°P x C to the category of sets.
We write F' 4 G and say that (F,G) is an adjoint pair.

Lemma 2 (cf. [Mac98, Theorem 2, p. 93]) The following are equivalent.
(1) The functor F is left adjoint to G, i.e. F 41 G.

(2) There are natural transformations n: ide — GF and ¢: FG — idp such that the
following diagrams commute for all X € Ob(€) and Y € Ob(D).

nx . parx Gy €Y, GFGY

c& J (N JGEY

(3) There is a natural transformation ¢: FG —idp and for each morphism f: FX —Y in
D there is a unique morphism f: X — GY such that f = (Ff)ey.

f

FX ——Y
\Z\ TEY
IFf

FGY

11



If F' 4 G is an adjoint pair of functors, the natural transformation €: FG — idp from Lemma
2.(2) is called a counit while n: ide — GF is called a unit of the adjunction.

Proof. (1) = (2) For objects X € Ob(C) and Y € Ob(D) define morphisms nx: X - GFX
and ey : FGY — Y by
nx = (idrx)px'px  and ey := (ldgy)pey,y-

Note that since ¢ is a natural isomorphism also p~': D(F(—),=) — C(—,G(=)) is a natural
isomorphism with components (¢™1) ;. := cp)_(,ly.

1

Suppose given a morphism f: X’ — X in €. Then using the naturality of ¢~ we have

fix = f - ([drx)ex ey = (idrx)ex px €(f, Gidrx)
= (i[drx)D(Ff,idrx)exr px = (F)ox px-
On the other hand, we have
nx/(GFf) = (idpx)exs pxs - (GFf) = (idpx/) oy px: Clidxr, G(F[))
= (idpx)D(Fidxr, Ff)oxr px = (FHexr px-
We conclude that 7 := (1x) xcob(e) constitutes a natural transformation n: ide — G'F.
Suppose given a morphism g: Y — Y’ in D. Then using the naturality of ¢ we have
eyg = (iday)eayy -9 = (iday)vay,yD(F(iday), 9)
= (ldey)C(iday, Gg)eay,y = (Gg)pay,y
On the other hand, we have
(FGg)eyr = (FGy) - (iday)pay' y' = (iday')pcy y' D(F(Gg),idy)
= (iday)€(Gg, G(idy))pavy = (Gg)pay,y -
We conclude that € := (ey)ycon(p) constitutes a natural transformation e: F'G — idyp.
For the first asserted commutative triangle we calculate using the naturality of ¢ for X € Ob(C)
(Fnx)(erx) = F((drx)ex'py) - (idarx)parx rx
= (i[dgrx)earx,rx D(F((idrx)ex px): idrx)
= (idarx)C(([drx)ex px: Glidrx))px,Fx
= (idrx )X px X, FX
=idpx .

For the second asserted commutative triangle we also use naturality of ¢! for Y € Ob(D)
and obtain

(nay )(Gey) = ldFGY)SOGY ray - G((iday)eay,y)
ldFGY)SOGY ray Cliday, G((iday)eayy))

(
(
= (idpay)D(F(iday), (day)eay.y)ay.y
(

iday)eay, Y@ny

iday .

12



(2) = (3) By assumption, there is a natural transformation e: F'G — idp. Suppose given a
morphism f: FX — Y in D. Consider f :=nx(Gf): X — GY. Then using naturality of &
and the first commutative triangle in the assumptions we obtain

(Ffley = (Fnx)(FGf)ey = (Fnx)erxf = f.

To ShOV\i uniqueness, suppose given morphisms fi: X — GY and fo: X — GY in C with
f=(Ffi)ey = (Ff2)ey. Applying G to this equation and precomposing with nx gives

nx (GF f1)(Gey) = nx (GF f2)(Gey).

Now use naturality of 1 and the second commutative triangle in the assumptions to obtain

fi = finay (Gey) = nx(GF fi)(Gey) = nx(GF f2)(Gey) = fangy (Gey) = fo.
(3) = (1) For X € Ob(€) and Y € Ob(D) define the map

exy: CX,GY) — DFX)Y)
g —— (Fg)ey.

By assumption, ¢x y is a bijection. Suppose given morphisms u: X’ — X in Cand v: ¥ — Y’
in D. For g € C(X,GY) we obtain using the naturality of ¢

(Fg)ey)D(Fu,v)
Fu)(Fg)eyv
Fu)(Fg)(FGv)ey
F(ug(Gv))ey
(ug(Go))px0y
9C(u, Gv)pxr yr.

goxyD(Fu,v) =

—~ —~~

Hence the following diagram commutes.

PX,Y

C(X,GY) — 22X, D(FX,Y)

JG(U,G’U) J@(Fu,v)

e(X',GY") X, p(FX',Y")

Thus ¢ := (px,v: C(X,GY) = D(FX,Y))xcob(e),yeobD) constitutes a natural isomorphism
¢: C(—,G(=)) = D(F(-),=), i.e. F is left adjoint to G. O

1.2 Graded modules and A_-algebras

Let R be a commutative ring.

All modules are left R-modules, all linear maps between modules are R-linear maps, all tensor
products of modules are tensor products over R.

13



1.2.1 Graded modules

We first introduce grading categories, a formalism that allows us to handle classical Ao-
categories as A.-algebras over that grading category.

Definition 3 A grading category Z = (Z,S,|—]) consists of a category Z, a bijection
S: Mor(Z) — Mor(Z) between the morphisms of Z, called shift, and a degree function
|—]: Mor(Z) — Z, satistying the following axioms.

(G1) For a morphism z: x — y from x to y in Z also its shift 2S: x — y is a morphism from
T to y.

(G2) For two composable morphisms w: © — 2’ and z: 2’ — 2” in Z one has for the shift
(wz)S = (wS)z = w(zS) and for the degree |wz| = |w] + |z].

(G3) For a morphism z: x — y in Z one has |zS| = [z] + 1.
For k € Z we also write z[k] := 2S*.

In most examples, the grading category will be of the following form.

Example 4 Denote by Z the category with one object and morphisms given by the integers
with addition as composition. Let C be a category.

Then the product category Z x € is a grading category with shift (z, f)S = (z + 1, f)S and
degree function |(z, f)| = z for z € Z and f € Mor(C).

In particular, we have the grading category Z, which can be identified with Z x 1, where 1 is
the trivial category with one object and one morphism.

Oftentimes, the category € will be a pair category over some set, which we define next.

Definition 5 Given a set X, the pair category over X is the category Pair(X) with objects
Ob(Pair(X)) = X and morphisms Mor(Pair(X)) = X x X, where the only morphisms between
x € X and y € X is the pair (z,y) € X x X.

The identity on « € X is the pair (x,z): x — z, for morphisms (z,y): * — y and (y,2): y — z
their composite is the pair (z,z): z — z.

Definition 6 Let Z be a grading category. A Z-graded module is a tuple (Mz)zeMor(Z)
of modules M*. A graded linear map f: M — N is a tuple (f*).emor(z) of linear maps
f#: M* — N*.

Let M be a Z-graded module and z € Mor(Z). For m € M* we call |z] the degree of m. We
often write |m| := | z].

For graded linear maps f: M — N and g: N — P, we define their composite fg: M — P
by (fg)? := f*g*. We obtain the category of grMody of Z-graded modules with graded linear
maps.

The shift map S on the grading category Z induces the shift functor on the category grModg
of Z-graded modules, which we will also denote by S.

S: grModg —— grModg
M = (MZ)ZEMOI‘(Z) ? M[l] - (MZ[l])ZGMOI‘(Z)
(f = (eerorzy: M = N) — (fU = (f*M),enton(zy: MY — NOT)

14



Observe that the shift functor has a strict inverse, induced by the inverse shift S~! on the
grading category. For k € Z we write M* := S¥(M) and fI* .= Sk(f).

A graded linear map f: M — N of degree p € Z is a graded linear map f: M — NI, Note
that graded linear maps of degree 0 are just graded linear maps as defined above.

For graded linear maps f: M — N of degree p and g: N — P is a graded linear map of degree
q we define their composite fg: M — P to be the graded linear map of degree p + ¢ given by
the composite of f: M — NP with ¢lPl: NP} — plPtd This defines the category grMod of
Z-graded modules with graded linear maps of arbitrary degree.

Let M and N be Z-graded modules. The Z-graded module grHom(M, N) of graded linear
maps between M and N has at p € Z the module grHom(M, N)P of graded linear maps
f: M — N of degree p.

To define a graded linear map f: M — N of degree p, we often write

fr M — N
ffr om —— mf*

to indicate that f is the graded linear map from M to N that is at z € Mor(Z) given by the
linear map f%: M* — N4 that maps an element m € M? to mf? € NP, We often write
mf :=mf*.

Given Z-graded modules and graded linear maps, we define submodules, factor modules,
kernels, cokernels and images degreewise. This way, the category dgMod of Z-graded modules
is an abelian category.

Similarly, we say that a graded linear map f: M — N is injective, surjective resp. bijective, if
f? is injective, surjective resp. bijective for each z € Mor(Z2).

Definition 7 Using the composition of morphisms on Z, we can define the tensor product
of Z-graded modules. Suppose given Z-graded modules M, ..., M. Their tensor product is
defined as the Z-graded module given at z € Mor(Z) by

M. oM)'= @ M "®..0M™

Z=w1 W
Here, the direct sum runs over all factorisations of z into k factors wy,...,wy in the grading
category Z.

For the tensor product of graded linear maps, we impose the Koszul sign rule. Suppose given
graded linear maps f;: M; — N; of degree p; for 1 < ¢ < k. Then we define their tensor
product

f1®...®fk: M1®®Mk—>N1®®Nk

as the graded linear map of degree p; + ... + pi defined at z € Mor(Z) by
(m1 R...Q mk>(f1 R...xQ fk)z = (—1)21S1'<.7'S1€p"”'ijJ (mlfiul R...RQ mkf;:’“),

where m; € M;" and z = w; - - - wy, is a factorisation of z into k factors w; in Z. We remark
that the Koszul sign also appears when one composes tensor products of graded linear maps.
Suppose we also have graded linear maps ¢;: N; — P; of degree ¢; for 1 < ¢ < k. Then the
following formula holds

(1®... @)1 ®...0g) = (—1)21§"<j§’“qipj(f191 ®...® frgr)-
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Remark 8 Let R be the Z-graded module with

2 .

R if z=1idx for X € Ob(Z)
0 if z is not an identity.

Given a Z-graded module M and z € Mor(Z), where z: X — Y with X, Y € Ob(Z), we have

(R@M)Z: @ Rwl ®Mw2:RidX ®MZ:R®MZ

Z=wiw

and similarly
(M®R)Z: @ Mw1®Rw2:Mz®Ridy:Mz®R
Z=wiw2
Hence the isomorphisms of modules R ® M? = M? and M? ® R = M? define the following
canonical isomorphisms of Z-graded modules, the tensor unit isomorphisms

A RoM = M and p: MoR = M
A (rem) —— rm p*: (m®r) —— rm

We will identify along both isomorphisms A and p.

For a Z-graded module M we write M®° := R, and for a graded linear map f: M — N of
degree 0 we let f®0:=idz: R — R.

1.2.2 Differential graded modules and cohomology

We endow Z-graded modules with differentials and obtain differential graded modules. In the
case of Z-graded modules, this gives the usual definition of a complex.

Definition 9 Let Z be a grading category. A differential Z-graded module M = (M,d) is
a Z-graded module M together with a graded linear map d: M — M of degree 1, called
differential, that satisfies dd = 0.

A morphism of differential Z-graded modules is a graded linear map f: M — N of degree 0
that satisfies fdy = dpsf. Composition is given by the composition in grMod. This defines
the category dgMod of differental Z-graded modules and morphisms of differential graded
modules between them.

The category of differential Z-graded modules is an abelian category.

For differential graded modules, we can define cohomology.

Definition 10 Let M = (M, d) be a differential Z-graded module.

(1) The cohomology module of M is the Z-graded module HM that is at z € Mor(Z) given
by the factor module
(HM)? := ker(d?)/ im(d*[71)).

This is well-defined, since dd = 0 implies that d?l=Ud* = 0, i.e. im(d?l=1) C ker(d?) for
z € Mor(Z).

16



(2) Suppose given differential Z-graded modules M = (M,dy;) and N = (N,dy) and a
morphism of differential Z-graded modules f: M — N between them.

We define a Z-graded linear map Hf: HM — HN of degree 0 by
Hf: HM — HN
(Hf)?: m—l—im(d;{;”) — mf*? —i—im(df\[fl]).

This is well-defined, since for m € im(dfv[[fl]), i.e. m = nd*l=1 for some n € M*=1 we have

mf* =ndi U= np o d T e im(@Y).
The morphism f is a quasiisomorphism if Hf is an isomorphism.
Remark 11 Cohomology of Z-graded modules defines a functor

H: dgMod —— grMod
M —— HM
(ft M - N) —— (Hf: HM — HN),

cf. Definition 10.

Proof. Suppose given a differential Z-graded module M = (M,dys). For z € Mor(Z) and
m € ker(d3;) we have

(m + im(d;[J_I]))HidM =m+ im(df\[[”) =(m+ im(df\[[”)) idpa -

Hence Hidp; = idpps. Suppose given morphisms of differential Z-graded modules f: M — N
and g: N — P. For z € Mor(Z) and m € ker(d3,) we have

(m + im (@) (HF) (Hg) = (mf +im(d3"))Hg = mfg + im (@i )
= (m +im(dy; 1)H(fg)-
Hence H(fg) = (Hf)(Hg). We conclude that H is a functor. 0

Lemma 12 Suppose given a differential Z-graded module (M,d). We endow the tensor
product M®* as Z-graded modules with the differential

k
§=>id*"Vedeid®*)

r=1
This turns (M®F,§) into a differential Z-graded module.

Proof. We show that § is indeed a differential on M®*. Note that since the differential d on

17



M is of degree 1, we have to make use of the Koszul sign rule.

56 = (Zldw Vedeid®*- ><21d®5 Vodeid®® S>>

r=1 s=1
= Z (id®(T_1) Rd® id®(k_r)) (jd®(5_1) Rd® id®(k—s))
1<r<s<k
+ Y ([d® Y edid®* D) (([d®Y @ d e id¢FY)
1<t<k
+ Z 1d® D @d®id®k- r))(id@)(sfl) ®d®id®(kfs)>
1<s<r<k
= Z (id@(r—l) 2d®id®C "D eds id®(k—8))
1<r<s<k
+ Z (id®(t_1) Qdd ® id@(k—t))
1<t<k
_ Z (id®(s—1) RdId® id®(r—s—1) ®d® id@(k_r))
1<s<r<k
=0. -

1.2.3 A_-algebras

Definition 13 An Ag-algebra (A, (ur)r>1) over Z is a Z-graded module A together with
a tuple of Z-graded linear maps uy: (AMN)®% — Al of degree 1 that satisfy the Stasheff
equations for k > 1.

0= Y (d* @ps @id*)ur14s

r4s+t=k
r,t>0,s>1

A morphism of Ag—algebras p: A — Bis a tuple ¢ = (pg)r>1 of Z-graded linear maps

Ok (A[l])@’k — Bl of degree 1 that satisfy the following Stasheff equations for morphisms for
k>1.

Yo A @us@id® )= Y. Y (pn ®... Qi)

r+s+t=k 1<r<k i1+t = k
rt>0,s>1 1] yeeeytp 1

For k =1 the Stasheff equation becomes pp; = 0. It follows that (A[l], 1) is a differential
Z-graded module. The cohomology module of the Ag-algebra (A, (tr)k>1) is the cohomology
module of the differential Z-graded module (Al 1), cf. Definition 10.(1).

For k£ = 1 the Stasheff equation for morphisms becomes p1¢1 = pip1, i.e. for a morphism
of Ago]—algebras ¢: A — B the first component ¢;: A — Bl is a morphism of differential

Z-graded modules between (A, 1i1) and (BY, ).

An A[oﬂ—quasiisomorphism is a morphism of Ag—algebras ©: A — B such that ¢;: Al — Bl
is a quasiisomorphism of differential Z-graded modules, cf. Definition 10.(2).

Definition 14 (cf. [Sta63]) An A-algebra (A, (mg)r>1) is a Z-graded module A together
with a tuple of graded linear maps my: A®* — A of degree 2 — k satisfying the Stasheff
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equations for k > 1

0= > (-1)""(d* @m, ®id®)m, 414

r+s+t=~k
rt>0,s>1

A morphism f: A — B of Ay-algebras is a tuple (fgx)x>1 of graded linear maps fj: A% — B
of degree 1 — k satisfying

> (1) @ my @ 1dF) frp1ge

r4+s+t=k
r,t>0,s>1

= Z Z (—1)21§p<qﬁr(1_ip)iq(fi1 ® ... ® fi,)m,.

1<r<k iyt..tir=k
150t 21
Remark 15 (1) Let (A, (m)g>1) be an A-algebra. Consider the graded linear map
w: A — Al of degree —1 given by w? := id: A% — (A1 = A% at 2 € Mor(2). One can
conjugate the maps my of degree 2 — k to graded linear maps

g, o= (W) mypw: (A EF Al

of degree 1. By the Koszul sign rule, the u satisfy the Stasheff equation from Definition 13, i.e.
(AN (ug)r>1) is an Ag—algebra over Z. This way, an Ay-algebra (A, (my)x>1) corresponds
to an A[olcl—algebra (AN () e>1)-

Similarly, conjugating the graded linear maps f,: A®¥ — B of degree 1 — k with w yields
graded linear maps ¢, : (AN)®* — Bl of degree 0, which then satisfy the Stasheff equation
(1]

for morphisms of Ags-algebras from the definition above. That 1[si there is a bijection between
1

A -algebra morphisms from (A, (mg)r>1) to (B, (Mmg)r>1) and Ag-algebra morphisms between
(AY, (i )r=1) and (B, (g )x>1).

As in the case of Ag—algebras, an Ay-algebra (A, (my)g>1) gives rise to a differential Z-graded
module (A, m1). An A, -morphism f: A — B is called an A -quasiisomorphism if fi: A — B
is a quasiisomorphism of differential Z-graded modules.

Since w is an isomorphism, f: A — B is an A-quasiisomorphism if and only if the corre-

sponding Ag—algebra morphism ¢: Al — Bl is an Ag—quasiisomorphism.

(2) The case of classical Ay-algebras is included in our definition using the grading category
Z. The case of A,-categories in the sense of [Kel01] or [Sei08] is included using a grading
category of the form Z x Pair(X), where X is the set of objects of the A,-category.

1.3 Coalgebras

Let R be a commutative ring.

All modules are left R-modules, all linear maps between modules are R-linear maps, all tensor
products of modules are tensor products over R.

Fix a grading category Z. Unless stated otherwise, by graded we mean Z-graded.
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In this section, our first aim is to review the classical Bar construction, cf. §1.3.3 below. We
will obtain a full and faithful functor

Bar: As-alg — dgCoalg.

The image of Bar is the category dtCoalg of differential graded tensor coalgebras.

The coalgebras in dtCoalg will not be equipped with a counit. However, we describe how one
can construct a counital coalgebra out of an arbitrary coalgebra in a functorial way and then
apply the general construction to tensor coalgebras, cf. §1.3.4 and §1.3.5 below. This simplifies
formulas and avoids case distinctions, cf. e.g. Lemma 37.

1.3.1 Definitions

Definition 16

(1) A graded coalgebra C = (C,A) is a graded module C' with a graded linear map
A: C — CRC of degree 0, the comultiplication, that is coassociative, i.e. A(id ®A) = A(A®id).

c—42 (00

A A®id
C£C“@%C®£®C

(2) Let C = (C,A¢) and D = (D,Ap) be graded coalgebras. A morphism of graded
coalgebras is a graded linear map f: C' — D of degree 0 that satisfies fAp = Ac(f ® f).

f

¢ —— D

J{Ac J{AD

coc % peb

With composition and identity as in the category of graded modules we obtain the category
grCoalg of graded coalgebras and morphisms of graded coalgebras between them.

(3) A counital graded coalgebra C = (C, A, ¢) is a graded coalgebra (C, A) with a graded
linear map €: C' — R of degree 0, the counit, such that A(id®¢) = idec = A(e ® id).

CoR M oo =29 Rec

~i -

(4) Let C = (C,A¢,ec) and D = (D, Ap,ep) be counital graded coalgebras. A morphism
of counital graded coalgebras is a morphism of graded coalgebras f: C' — D such that fep = e¢.

I
N

C

N

€D

—
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With composition and identity as in the category of graded modules we obtain the category
grCoalg+ of counital graded coalgebras and morphisms of counital graded coalgebras between
them.

(5) A differential graded coalgebra C = (C,A,m) is a graded coalgebra (C,A) with a
differential m: C — C, i.e. m is a graded linear map of degree 1 with mm = 0, such that
mA = A(ld®m +m ®id).

Note that (C,m) is a differential graded module and A: C — C ® C is a morphism of
differential graded modules, cf. Lemma 12.

(6) Let C = (C,A¢,m¢) and D = (D,Ap,mc) be differential graded coalgebras. A
morphism of differential graded coalgebras from C to D is a graded linear map f: C' — D of
degree 0 that is both a morphism of differential graded modules and a morphism of graded
coalgebras. That is, it satisfies both fmc = mef and fAp = Ac(f ® f).

With composition and identity as in the category of graded modules we obtain the category
dgCoalg of differential graded coalgebras and morphisms of differential graded coalgebras
between them.

We will often drop the index for comultiplication and differential, i.e. we will just write A for
the comultiplication of a graded coalgebra and m for the differential on a differential graded
coalgebra.

Remark 17 Let C = (C,A,m) and D = (D, A, m) be differential graded coalgebras. Let
f: C = D be a morphism of differential graded coalgebras.

Then f is an isomorphism of differential graded coalgebras if and only if it is an isomorphism
of graded coalgebras.

Proof. Suppose that f is an isomorphism of graded coalgebras. Let f~': D — C be the
inverse. Then f~! is a morphism of graded coalgebras. Moreover, using that f is a morphism
of differential graded coalgebras we obtain

frhm=ftmf = T mf T = mf

Hence f~! is a morphism of differential graded coalgebras, thus f is an isomorphism of
differential graded coalgebras.

The other direction is clear. O

1.3.2 Tensor coalgebras

Definition 18 Let A be a graded module.

Define the graded module TA = @y~ A®*. Let 1;: A%% — T A be the inclusion into the k-th
summand and let 7,: TA — A®* the projection onto the k-th summand.

Define the graded linear map A: TA — TA ® T'A on the summand k& > 1 by

LA\ A®k 5 TARTA
(LA a1 ®...Q0a, +—— Z (a1 ®...®ag)(ti ®t5)*.
it+j=k
i,521
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Then (T'A, A) is a graded coalgebra, the tensor coalgebra over A.

From the definition of the comultiplication and the universal property of the kernel, we can
conclude the following remark.

Remark 19 The kernel of A is the first summand A®!. In particular, we have ;A = 0.

Moreover, a graded linear map f: TA — T B with fA = 0 has its image in the first summand,
ie. fA=0if and only if f = frie1.

Remark 20 Let T'A be the tensor coalgebra over a graded module A. For k, ¢1,¢5 > 1 the
comultiplication A on T'A satisfies the following.

id®k for k =401 + /9

0 else

(1) (g, ® mp,) = { } D A®E o A®h @ 4Bl = AB(Gtl)

(2) A("T& ® WEQ) = Ty +0o

(3) A= Z Li Qtj
it+j=k
,j21

Proof. (1) Let z € Mor(2) and let a1 ® ... ® ax € (A®*)". Then

(a1 ®X...x ak)LiAz(ﬂ'gl &® 7['@2>Z = Z (a1 ®X...x ak)(ai &® Lj)z(ﬂ'gl &® 7T32)Z
i+j=k
i,j>1
= Z (a1 ® ... ak)(Limy ® 1jme,)".

i+j=k
4,521

If 41 4+ €5 = k, then only the summand with ¢ = £; and j = ¢> above is non-zero and equals

a1 ® ...® ay, it follows that txA(my, ® 7p,) = id®*.

If b1 + 05 # k, then ¢ = {1 and j = {2 can not hold both, i.e. the sum above is zero and it

follows that 1z A(my, ® m,) = 0.

(2) For k > 1 we have using (1) that
- 1@k

A (g, & 7p,) = {1d® for k =01 + 62} R

0 else

(3) This is the definition of the comultiplication A. O

Notation 21 Given a graded linear map f: TA — T'B between two tensor coalgebras over
graded modules A and B, we write fy ¢ := 1 fmp: A% — B for k, £ > 1.

Similarly, for a graded linear map ¢: TA — B and k > 1 we write ¢, = 1p0: A®*¥ — B.
Conversely, given graded linear maps fj s: A®k _y B® for k, ¢ > 1 such that for all k > 1
the set {¢ € N : fi, # 0} is finite, there is a unique graded linear map f: TA — T'B with
fre = tefme. Note that the finiteness assumption is required since the tensor coalgebra is
defined as an infinite direct sum (i.e. an infinite coproduct).
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In particular, given two graded linear maps f: TA — TB and ¢g: T B — T'C' between tensor
coalgebras over graded modules A, B and C' the (k,{)-entry for the composite is given by

(FDre =D frjgi-

Jj=1

Note that the above conditions on f and g ensure that the sum is finite. Oftentimes, we
consider such graded linear maps with fr, = gre = 0 for £ < £. In this case, the formula
above becomes

2
(FDre = frjgie-
=t

We will make use of this matrix calculus without further comment.
Lemma 22 Let A and B be graded modules. Then the following hold.
(1) Consider the map
B = Bcoalg: grCoalg(TA,TB) — grHom(TA, B)°
[ fm

from the set grCoalg(T'A,TB) of morphisms of graded coalgebras TA — TB to the set
grHom(T A, B)? of graded linear maps TA — B of degree 0.

Consider the map o := acoalg: grHom(T A, B)? — grCoalg(T' A, TB) that is for a graded linear
map o € grtHom(T A, B)° for k, £ > 1 given by

(Pre= D i ®...0pi.
i1+...+ie:k
01 yeenyig 21

Then o and B are mutually inverse bijections.

In particular, for a coalgebra morphism f: TA — T B between tensor coalgebras the following
formula holds for k, £ > 1.

foe= Y fa1®...® fi1

’i1+...+ig:k’
Ulestg 21

Note that this implies that fi = f@lk

(2) Let Coder(T A, TA) 04 e the module of coderivations on TA, i.e. the module of
graded linear maps m: TA — T A of degree 1 that satisfy mA = A(ild®@m+m®id). Consider
the linear map

B := Bcoder: Coder(TA,TA)L(id’id) — grHom(T' A, A)!

m o — mm

from the module of coderivations on T A to the module grtHom(T A, A)! of graded linear maps
TA — A of degree 1.
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Consider the linear map o = coqer: grHom(T'A, A)' — Coder(T A, TA)l’(id’id) that is for a
graded linear map pu € grtHom(T A, A)! for k. £ > 1 given by

(ua)w = Z id®r Qs id®t .
r+s+t=k
r+1+t=0
(r,s,t)>(0,1,0)

Then o and B are mutually inverse linear isomorphisms.

In particular, for a coderivation m: TA — T A on a tensor coalgebra the following formula
holds for k,£ > 1.
mpe= Y. id¥ @mg ®id®
r+s+t=k

r+14t=¢
(r,s,t)>(0,1,0)

Note that this implies that my, = 2?2—01 id® @ mi1 ® id®k—i=1),

Concerning the notation Coder(T'A, T'A)%(di4) for the module of coderivations on T'A, cf. also
Definition 34 below. Moreover, in Lemma 37 below we prove a generalisation of the above
Lemma 22.(2) to general (f,g)-coderivations.

Proof. (1) We show that o is well-defined. That is, given a graded linear map ¢: TA — B
of degree 0 we show that @« is a coalgebra morphism.

It suffices to show that ti(pa)A(my, ® 7e,) = A ((pa) @ (pa))(me, @ m4,) for all k, 41,05 > 1.
Using Remark 20, the left-hand side gives

() Ay, @ To,) = t(PQ) Ty 14,
= (9004)1%51-!—42

while the right-hand side gives

A () ® (pa)) (g, ®@ m,) = Y (1 ® 15) () ® () (e, @ T4,)
it+j=k
i j>1

= Z (pa)i, @ (9005)]}42'
i+j=k
i, j>1

We obtain

(P by 16, = > Piy ® .. O Pi, ® P ® ... O @jy,
114ty Fi1t ey =k
UlyeenyBly 5 J15e5dg 21

- Y Y ao.emsme.op,
itj=k i14.Fig =i Jit.+ie,=j
G321 i 21 fiefey 21

= Y (pa)is, @ (9a)je,-
i+j=k
i j>1

Hence pa is a coalgebra morphism.
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We show that af = id. Let ¢: TA — B be a graded linear map of degree 0. Then given k > 1

te(paB) = u(pa)m = (Pa)k1 = Ok = L,

hence paf = . It follows that af = id.

We show that B is injective. For this, suppose given coalgebra morphisms f: TA — T'B and
g: TA— TB with f8 = gf, i.e. fmr1 = gmi. we show that x(f —g) =0 for all £ > 1.

We use induction on k. For k = 1 we use that the first summand A®! is the kernel of A, thus
t1A = 0, and obtain
u(f-glA=ulA(fef-gog) =0.
It follows that ¢1(f — g) = t1(f — g)m1t1 = v1(fm1 — gm1)er = 0, cf. Remark 19.
Now let & > 1. Then, since by induction ¢; f = ¢;¢ for ¢ < k, we have using Remark 20
w(f—9A=uA(f®f-g0g) = > (Lioy)(fOf-g®yg)

itj=1
,j>1

= Z uf @ uif — g ® g
itj=1
ij>1

=0.

Thus 1 (f — 9) = w(f — g)mit1 = w(fm — gm)er = 0, cf. Remark 19. Hence it follows by

induction that g is injective.

Hence S is injective with a8 = id, thus « and § are mutually inverse bijection.

Finally, for a coalgebra morphism f: TA — T B we have since (ff5); = (fm)i = vifm = fia
fro=(fB)re= D (Ba®--.0(fBi,= D, [fu1®...® fin

i1+...+ig=k i1+...+ig:k
U150 te>1 01 yeenytg 21

for k, ¢ > 1.

(2) We show that « is well-defined. That is, given a graded linear map pu: TA — A of
degree 1 we show that pa is a coderivation.

It suffices to show that ¢y (pa)A(me, ® mp,) = e A(Id® (pa) + (po) @ id) (e, ® me,) for all
k, 01,0 > 1. Using Remark 20 the left-hand side gives

Lk(ua)A(Wfl ® 7T@2) = Lk(ua)ﬂfﬁr&
= (:U*O‘)k,el-&-fw

while the right-hand side gives

A ® (per) + (per) @id) (1, ® mg,) = Y (4 ® ¢5) (I ® (o) + (per) @ id) (g, ® mg,)

i+j=k
6,521
= > um @uy(pa)me, + Y u(pa)me ® e,
i+j=k i+j=k
i,5>1 i,521

= id ge0 @ th—r, (pa)me, + ti—p, ()T, @ id yee,

= id5" @ () p—py by + (HO)p—py,0, ® G2
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We obtain

s 1® ;A
Z idy" @ ps ®1id3
r+s+t=k
r+14t=~01+02
7>0,5>1,1>0

>

r4+s+t=~k
r+14+t=01+Lo
r>£01,8>1,t>0

D

r+s+t=k
r+1+t=~>01+4>
r>01,s>1,t>0

>

(Na)k‘,fl +42

idY @ ps ®id +

idY @ ps ®id%" +

u+ts+t=k—¥1
u+1+t=~,o
u>0,5>1,t>0
c 14
_iagh ®< 5
u+ts+t=k—¥1
u+1+t=~,o

u>0,5>1,t>0

id5 O @ g @ 1dSE+

1dS" © ps ® id§t> + <

>

r+s+t=k
r+1+t=~01+42
l1—1>r>0,5>1,t>0

Yo idY ®ps ®idy
r+s+t=~k

r+1+t=~01+4>
r>0,5>1,t>0s

id}" @ ps ®id%*

. . 1R(v+4o
Yo idY @u@id]
r+st+v=k—{o
r+1+v=~,1

r>0,s>1,v>0

>

r4+st+v=k—{o
r+l+v=>~0(1
r>0,s>1,v>0

idg" @ ps ® idj‘f{”) ®id§"

= idgel @ (L) k—ty,0, + (L) k—t5,0, @ idﬁ& :

Hence pa is a coderivation.

We show that af =id. Let u: TA — A be a graded linear map of degree 1. Given k > 1, we
have

we(paB) = u(pa)m = (pa)g1 = pe = tip,
hence paf = p, i.e. aff =id.
We show that B is injective. For this, we show that the kernel of  is trivial. Given a
coderivation m: TA — T A with mf = mm; = 0, we show that ¢pm = 0 for all £ > 1. We use
induction on k. For k = 1 we use that 1A = 0 since the first summand A®! is the kernel of A

and obtain
tumA = 1 A(ld®m +m ®id) = 0.

With Remark 19 we conclude that vym = tymmie; = t1(mf)e; = 0. Now let & > 1. Then,
since ¢;m = 0 for ¢ < k by induction, we obtain using Remark 20

temA = 4y A(ld®@m 4+ m ®1id) Z (ti @ 5)(id®@m +m ® id)

it+j=k
3,521
> (LW®uym+um®e) =0.
i+j=k
ij>1
Again we conclude that (ym = ypmmie; = tx(mf)e; = 0. Therefore it follows by induction
that 5 is injective.
Hence 8 is an injective linear map with af = id, hence « and § are mutually inverse
isomorphisms.
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Finally, for a coderivation m: TA — T'A we have since (mf3); = (mm1); = vymm = mia

mpe=mBa)re= Y, id¥emp),®id*" = > d¥ @m,®id*
r+s+t=k r+s+t=k
r4+-14+t=~ r+14t=~
(r,s,¢)>(0,1,0) (r,s,¢)>(0,1,0)
for k, ¢ > 1. O

Lemma 23 Let A and B be graded modules. For k > 1 let T<xA := Pq<j<y, A®T C TA.

(1) Let f: TA — TB be a morphism of graded coalgebras. Then we have fr¢ = 0 for
1<k</, ie wehave (T<tA)f C T<iB.

2) Let m: TA — TA be a coderivation. Then we have my =0 for 1 <k < {, i.e. we have

Proof. (1) By Lemma 22.(1) we have

fee = Z Ji1®...® fi1.

i1+...+ig:k

i1yeyig>1
For £ > k the sum is empty, hence f;, = 0.
(2) By Lemma 22.(2) we have

My ¢ = Z id®" ® ms1 & id®t .
r+s+t=k
r+1+4+t=~£
(,8,t)>(0,1,0)

For £ > k the sum is empty, hence my, o = 0. ]

Lemma 24 Let A and B be graded modules.

(1) Suppose given a tuple (juy)i>1 of graded linear maps py: A®* — A of degree 1. Let
w: TA— A be the graded linear map with vy = pg. By Lemma 22.(2), this defines a unique
coderivation m: TA — TA on the tensor coalgebra with mm; = p.

Then (T A, A,m) is a differential graded coalgebra, i.e. m* = 0, if and only if (A, (ug)k>1) 4s

an Ag -algebra, i.e. the tuple (jux)r>1 satisfies the Stasheff equation

0= > (1d¥ ®ps ®id®) prp14e

r+s+t=k
(T9S7t)2 (07170)

for k> 1, cf. also Definition 13.

(2) Let (A, (puk)k>1) and (B, (uk)r>1) be Ag—algebms. By (1), there are corresponding
differential graded coalgebras (TA,A,m) and (T B,A,m).

Suppose given graded linear maps py: A®* — B of degree 0 for k > 1. Let o: TA — B be the
graded linear map with 1y = @r. By Lemma 22.(1), this defines a unique morphism of graded
coalgebras f: TA — TB with fr1 = ¢.
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Then f is a morphism of dz’]?”erential graded coalgebras, i.e. fm = mf, if and only if the tuple
. . 1] o )
(pr)E>1 s a morphism of Aso-algebras, i.e. it satisfies

> (d¥ @ ps ®1d¥)pri14e = Z Yo (en®.. @i

r+s+t==k =1 i1+...+ip=k
(T'St) (07170) i1,0580 21

for k> 1, cf. also Definition 13.

Proof. (1) Let k > 1. By Lemma 23.(2) we have (T<zA)m C T<,A, hence we have
Lpm = Z?:l LMLy Using Lemma 22.(2) we obtain

Lem?m = Z LML = (Z Z (id®" @ ps ® id®t)Lg> mmy

{=1 r+s+t=k
r+1+4+t=~¢
(T7S7t)—(07170)

- Z (id@T ® Hs ® id®t),ur+l+t

r+s+t==k
(r,5.6)(0,1,0)

Hence we have to show that m? = 0 if and only if m?m; = 0. We only have to show the “if”
part. Suppose that m?m; = 0. We use induction on k > 1 to show that ¢;m? = 0.

For k = 1 note that since t1A = 0 we have

um?A = A(d@m+m@id)(id@m +m ®id) = 0,

hence using Remark 19 we have tym? = vym?me; = 0.

Now let k& > 1. Using Remark 20, the Koszul sign rule and using that ¢;m? = 0 for i < k we
obtain

uem?A = yA(ild@m +m®id)(id@m 4+ m @ id)
=y Aldem?*+me m—me@ m+m? ®id)
= Z (1 @ 1) (id@m? + m? @ id)
i+j=k
521
= Z (i ® t;m? + um? @ 1))
i+j=k
,5>1
=0.
Again using Remark 19 gives tpm? = yym?mye; = 0.
Hence it follows by induction that ¢(;m? = 0 for all k£ > 1. Therefore m? = 0.
(2) Let k> 1. By Lemma 23.(1-2) we have (T<;A)f C T<;A and (T<pA)m C T<, A, hence
wf = Zi?:l tefmere and pm = Zi?:l tgmmyte for k > 1. Using Lemma 22.(1-2) we obtain

k k
temfm = Z LemmpLg fm = (Z Z (1d®" @ ps ® id®t)[,g> fm

(=1 (=1 r+s+t=k
1=t
(r,8,t)>(0,1,0)
= Y (id*¥ ®ps ®id%)orp14e

r+s+t=k
(r,s,t)>(0,1,0)
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and

k k
wfmm =Yy frpmm = (Z > (pn®...® s%)%)ﬂ”wﬁ

/=1 /=1 i1+...+’ig=k
01,0021

k
=> D (pn®.. O i)

/=1 i1+...+Zj:k
U15eeytg>1

Hence we have to show that fm = mf if and only if fmm; = mfm, i.e. we have to show that
fm—mf =0if and only if (fm —mf)m = 0. Of course, we only have to show the “if” part.
For this, we use induction to show that ¢x(fm —mf) =0 for k > 1.

For k = 1 we use that (1A = 0 since the first summand A®! is the kernel of A to obtain
u(fm—mfIA =uA(f® flideom+meid) - (i[dem +meid)(f® f)) = 0.

Hence t1(fm —mf) = ¢v1(fm — mf)mey =0, cf. Remark 19.

Now let k£ > 1. Using Remark 20 and using that by induction ¢;(fm — mf) = 0 for i < k, we
have

e(fm—mfA =y A((f@ flideom+meid) — ([dem+meid)(f & f))

= > (u@y)(f® fm+fm@m—fomf—mf® f)
PESH

= Y (@) (f@ (fm—mf)+ (fm—mf)® f)
pEst

=0.

Again using Remark 19 we conclude that tx(fm — mf) = wx(fm — mf)mie, = 0.
Hence it follows by induction that tx(fm —mf) =0 for k£ > 1. Therefore fm = mf. O

We remark that the proof of Lemma 24.(2) can be simplified using the results of §2.1 below. In
fact, fm —mf is an (f, f)-coderivation in the sense of Definition 34. This follows for example
using Lemma 36 since m is an (id, id)-coderivation. The assertion fm = mf if and only if
fmmi = mfm then follows immediately from Lemma 37.

Lemma 25 Let A and B be graded modules and suppose give a morphism of graded coalgebras
f: TA — TB between their tensor coalgebras.

If fi1 is a split monomorphism, then f is injective.
Proof. By Lemma 23 (T<;A)f C T<yB for all k > 1, hence we can define the restriction
T<xB

fﬁk = f|T§kA : TSk:A — TSk:B-

By Lemma 22.(1), we have fi ) = (f1.1)®*%, hence fr.k is a split monomorphism for k£ > 1.
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We claim that f<j is an injective graded linear map for £ > 1. We use induction on k. Since
f<1 = fi1, the case k =1 is our assumption. Now let k£ > 1. Consider the following morphism
of short exact sequences of graded linear maps.
iék p?+1
0 —— TA ———— T A —— AR+ 5

‘/f<k ‘/f<k+1 ‘(fk%»l,k%»l
,L'B

B
0 TuyB —= s 1 B U5, ek

Here iék and igk are inclusions of direct summands and pfﬂ and pkB ',1 are projections onto
direct summands. By induction, f<j is injective. We also know that fi1 41 is injective.
Adding the kernels of the vertical maps to the above diagram gives the following commutative
diagram with exact rows.

0 0 ker(f<pi1) ———— 0

1 A
0 —— TgkA i) Tgk—i-lA L A®(k+1) — 0

f<k f<kt1 Frt1,k41

B
0 — T<;B =k, T<pt1B P et

But then ker(f<gy1) = 0, hence f<jyq is also injective. Therefore the claim follows by
induction.

Suppose given z € Mor(Z) and ay, az € (T'A)* with a1 f* = ag f*. Since T'A is an infinite direct
sum we can find a k > 1 such that a1, a2 € (T<A)*. But since f<j, is injective, it follows that
a1 = az. Therefore f is an injective graded linear map. O

Lemma 26 Let A and B be graded modules and suppose given a morphism of graded coalgebras
f: TA— TB between their tensor coalgebras.

Then f is an isomorphism of graded coalgebras if and only if the component fi1: A — B is
an isomorphism of graded modules.

Proof. Suppose that f is an isomorphism of graded coalgebras. Then there is a morphism
of graded coalgebras g: T'B — T A such that fg =idp4 and gf = idyrg. By Lemma 23, the
coalgebra morphisms f and g satisfy (T<1A)f C T<1B and (T<1B)g C T<1A. Hence we have
uf=ufmu = fiin and 119 = vigmier = gi1e1. It follows that

Jia911 = fiingm = ufgm =ida and  g11f11 =g fm = ngfm =idp.

Thus fi 1 is an isomorphism of graded modules.

Conversely, suppose that f11: A — B is an isomorphism of graded modules. By Lemma 23
(T<y)f € T<yB for all k > 1, hence we can define the restriction

T<kB
fgk = f‘TiZAZ TSkA — TSkB
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By Lemma 22.(1), we have fi ) = (f1.1)®*%, hence fr.k is an isomorphism for all £ > 1.

We claim that f<j, is an isomorphism of graded modules for all k& > 1. We use induction on k.
Since f<i = fi1,1, the case k = 1 is our assumption. Now let k¥ > 1. Consider the following
morphism of short exact sequences of graded linear maps.

- A A
0 TpAd —=F s Ty A D qe0t) g

Jf<k Jf<k+1 lfk+1,k+1
B

B
00— T B —=" 5 T B D, gall) g

Here iék and i?k are inclusions of direct summands and p‘,?H and pkB ',1 are projections onto

direct summands. By the inductive hypothesis, f<j is an isomorphism and the morphism
feriprr = (f 1,1)®<k+1) is an isomorphism since fi; is by assumption. Hence by the five lemma
in abelian categories also f<j41 is an isomorphism. Therefore the claim follows by induction.

To show that f is an isomorphism we show that f is bijective, i.e. we show that f# is bijective
for all z € Mor(Z). Given b € (T'B)* there is a k > 1 such that b € (T<;B)?. Since f<j
is surjective, we can find a preimage of b under f. For injectivity, let a;,as € (T'A)* with
a1 f* = ag f*. Since T'A is an infinite direct sum we can find a k > 1 such that a;, a2 € (T<;A)?.
But since f<j is injective, it follows that a1 = as.

Hence f is a bijective map of graded modules, hence an isomorphism. Let g be its inverse.
Then

gA=gA(f® f)lg®g) =9fA(g®g) = Alg® g),

therefore ¢ is a morphism of graded coalgebras. We conclude that f is an isomorphism of
graded coalgebras. O

1.3.3 The Bar construction

Let A := (A, (mg)r>1) and B := (B, (mg)r>1) be Ax-algebras and let (AN (uz)r>1) and
(B, (ur)x>1) be the corresponding Ag—algebras, cf. Definitions 13, 14 and Remark 15.(1).
Let A-alg(A, B) be the set of A,-morphisms from A to B.

Lemma 27

(1) There is a uniquely determined differential m on the tensor coalgebra (T AN, A) with
my1 = px for k> 1 such that Bar A := (TA“], A,;m) is a differential graded coalgebra.

(2) There is a bijection

Bar: Ay-alg(4,B) —— dgCoalg(Bar A, Bar B)
f —— Barf.

For an A-morphism f the differential graded coalgebra morphism Bar f: TAN — TR
is constructed as follows. Let ¢: (AN (up)r>1) — (BY, (u)rs1) be the Ag—morphz’sm
corresponding to f. Then Bar f is the uniquely determined morphism of differential graded
coalgebras with (Bar f)i1 = @i for k > 1, cf. Lemma 22.(1).
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Proof. (1) By Lemma 22.(2) there is a unique coderivation m on TAM with my, = pg. By

Lemma 24.(1) the coderivation m is a differential, since (yy)r>1 satisfies the Stasheff equations.
(2) Let f € Ax-alg(A4, B) be a Ay -algebra morphism. By Remark 15 there is a bijection
between A..-algebra morphism from (A, (mg)r>1) to (B, (mg)r>1) and Ag—algebra morphism
from (AM (ug)r>1) to (BN, (ur)k>1). Let ¢ be the Ag—algebra morphism corresponding to
f under this bijection.

By Lemma 22.(1) there is a bijection between graded linear maps TAM — BU ie. tuples of
maps (A)®F — Bl for k > 1, and coalgebra morphisms TAN — TBU. By Lemma 24.(2)
this bijection restricts to a bijection between All-algebra morphisms from (AM, (1) k>1) to
(B, (g)r>1) and differential graded coalgebra morphisms from Bar A to Bar B. O

Definition 28 We define the category A-alg of Ay -algebras that has as objects Ao-algebras
A = (A, (my)r>1) and morphisms of A-algebras as morphisms. Composition is defined by
transport of structure such that

Bar: A-alg —— dgCoalg
A —— BarA
(f:A— B) —— (Barf: Bar A — Bar B)

defines a full and faithful functor, cf. Lemma 27.

Definition 29 Let dtCoalg be the full subcategory of dgCoalg consisting of those differential
graded coalgebras whose underlying graded coalgebra is a tensor coalgebra over some graded
module.

We will call an object in dtCoalg a differential graded tensor coalgebra.
Note that the Bar functor from Definition 28 restricts to an equivalence of categories

Bar: Ag-alg —— dtCoalg C dgCoalg.

1.3.4 Attaching a counit

In Definition 16, we defined the categories of graded coalgebras grCoalg and counital graded
coalgebras grCoalgs. There is a forgetful functor V': grCoalg+ — grCoalg that sends a counital
graded coalgebra (C, A, ¢) to the graded coalgebra (C, A) and each morphism to itself.

We construct a right adjoint of V, i.e. a functor F: grCoalg — grCoalg+ that “attaches” a
counit to a graded coalgebra.

Lemma 30

(1) Given a graded coalgebra C = (C,A), the graded module C := R® C' is a counital graded
coalgebra with comultiplication and counit given as follows.

A: ReaC — R®C)®(RaC)
A7 (r,c) (r,0) ®(1,0) + (1,0) ® (0,¢) + (0,¢) ® (1,0) + cA*(t ® 1)?

—
& RoC — R
€%: (rye) —— r
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Here, 1: C — R® C denotes the graded linear map of degree 0 given by inclusion of the direct
summand.

Note that for z: x — y in Z and the summand (1,0) ® (0,c) in the definition of A* above
we have (1,0) € (R® C)% and (0,c) € (R® C)*. For the summand (0,c) ® (1,0) we have
(0,¢) € (R® C)? and (1,0) € (R C)'y,

(2) Given a morphism f: C — D between graded coalgebras C = (C,A) and D = (D, A),
the graded linear map . ' .
fr ReC — ReC
fro (o) = (ref?)
is a morphism of counital graded coalgebras.

(3) We have the functor

E: grCoalg —— grCoalgsx
C —
[

O

Proof. (1) We have to show coassociativity of A and the counit property of €. For coassocia-
tivity of A, we claim that the following equation holds for z € Mor(Z) and ¢ € C*.

AN (1@ ) (@A) + (1,0) @ cA*(1® 1) = eA* (L@ 1) (A ®id)? + ¢A%(L @ 1)* ® (1,0)
(*)

To show the claim, let ¢A* = 31, ¢; @ ¢, for elements ¢; € C% and ¢; € C* for z;, 2, € Mor(Z)
with z;z] = z. We calculate.

A (1@ 1) (id @A) + (1,0) ® cA* (L ® 1)*

=3 (@)@ ) ([d@A) + 3 (L0)® (6@ d)(t®1)*
i=1 =1
= Zn:(o,cz) ® (0, ;) A% +Z (1,0) ® (0,¢:) ® (0, c})

=1

(o ¢) ® (1, ) +> (0,¢)® ® (1,0)
=1

o
Il
—

Il
M:

.
I

n
ZOCZ ) ® A% (L@ L)% + ® (0,¢;) ® (0, )

n
1=

1
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Similarly, we obtain

A (@) (A @id)* + cA* (1@ 0)* @ (1,0)
Z ¢ ® DFA®id) + Y (6@ d)(t®)* @ (1,0)
i=1 i=1
=D (0.c)A% © (0,¢) + D _(0,¢1) ® (0,¢) @ (1,0)
i=1 i=1
n n
= (1,0)® (0,¢;) ® (0,¢;) + > _(0,¢:) ® (1,0) @ (0, ¢})
i=1 i=1
chAZZ LR ® —}—Z (0, ¢) c) @ (1,0).
i=1 =1
Finally, we have
S7(0,6) @ AT (@) =Y (@A) (@1 ® 1) = cA* (@A) (1® L ® 1)
i=1 i=1

and

Y (AT @) (@101 = A (AR (e @),
=1

Yol (@) ® (0,¢)
=1

thus the claim (x) follows using coassociativity of A.

We are now able to show coassociativity of A. Let z: 2 — 1y be a morphism in Z and let
(r,c) € (R® C)?*. We calculate.
(r,)A*(d @A) = ((,0)® (1,0) + (1,0) ® (0,¢) + (0,¢) ® (1,0) + eA* (1 ® 1)) (id @ A)?
= (r,0) ® (1,0)A% 4 (1,0) ® (0, &) A% 4 (0,¢) ® (1,0)A% 4+ cA* (1 @ 1)*(id ® A)?
= (r,0)® (1,0)@ (1,0) + (1,0) ® ((1,0) ® (0,¢) + (0,¢) @ (1,0) + cA* (1 ® 1)*)
+(0,¢) ® (1,0) ® (1,0) + cA* (. ® 0)?(id @ A)?
= (r,0) ® (1,0) ® (1,0)
+(1,0) ® (1,0) ® (0,¢) + (1,0) ® (0,¢) ® (1,0) + (0,¢) ® (1,0) ® (1,0)
+ eA* (1 0)*(id @ A)? + (1,0) @ cA* (L @ 1)?
(r,)A*(A@id)* = ((r,0) ® (1,0) + (1,0) ® (0,¢) + (0,¢) @ (1,0) + cA* (1 @ 1)) (A @ id)*
= (r,0)A% ® (1,0) + (1,0)A% @ (0,¢) + (0,)A% @ (1,0) + cA* (1 ® 1)*(A @ id)*
= (r,0)®(1,0) ® (1,0) + (1,0) ® (1,0) ® (0, ¢)
+((1,0) @ (0,0) + (0,0) ® (1,0) + cA* (1 @ 1)*) @ (1,0) + eA* (L ® 1)*(A @ id)*
= (r,0)®(1,0) ® (1,0)
+(1,0) ® (1,0) (0 ¢)+(1,0) ® (0,¢) ® (1,0) + (0,¢) ® (1,0) ® (1,0)
+cA*(L® L)Z( id)* + cA* (L ®1)* ® (1,0).

(
(
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Thus coassociativity A(id® A) = A(A @ id) follows from ().

It remains to show that ¢ is a counit, i.e. that A(id®é) = id = A(é ® id). Note that by
definition of & we have (£ = 0. Note that we identify along the tensor unit isomorphisms, cf.
Remark 8. We calculate.

(r,e)A(id®2) = ((r,0) @ (1,0) + (1,0) @ (0, ¢) + (0,¢) ® (1,0) + cA* (2 ® 1)?) (id ® &)
=(r0)®1+(0,c)®1
= (r,0)

(r,0)A(¢ ®@id) = ((r,0) @ (1,0) + (1,0) ® (0,¢) + (0,¢) ® (1,0) + A*(t ® 1)*) (£ ® id)
=r®(1,0)+1®(0,c)

= (7”, C)
Hence € is a counit. It follows that (C, A ,€) is a counital coalgebra.

(
(2) We have to show fA = A(f® f) and f& = &. Let z € Mor(Z) and (r,¢) € C*. Note that
vf = fir. We calculate.

(r,0) A% = (r,cf*)A*
<r> < > (1,0) @ (0, ¢f*) + (0,¢f%) @ (1,0) + cf*A* (1 @ 1)?
(r,)A*(f @ f)* = ((r,0 )+ (1,0) @ (0,0) + (0,0) @ (1,0) + eA* (L@ 0)*) (f @ f)*
:(r,()) (1,0) (1,0) ® (0,cf*) + (0,cf*) ® (1,0) + cA*(f @ f)* (¢t ®@ ¢)*

Hence f is a coalgebra morphism since f is a coalgebra morphism, i.e. fA = A(f ® f).
Moreover, we have

(r, C)fzéz = (r,cf?)&* =r = (r,c)é".

Hence fé = £ and the assertion follows.

(3) By (1) and (2) the maps on objects and morphisms are well-defined. It remains to show
that Fid =id and E(fg) = (Ef)(Fg) for coalgebra morphisms f: C'— D and g: D — B.

Let z € Mor(€) and (r,¢) € (EC)? = C*. Then
(rye)(Eid)? = (r,cid®) = (1, ¢),
hence Fid = id. Moreover, we have
(r,)(E(f9))" = (r,c(f9)?) = (r.cf*g) = (r,c)(Ef)*(Eg),
hence E(fg) = (Ef)(EFg). It follows that E is a functor. O
Lemma 31
(1) Given a graded coalgebra C = (C,A), the graded linear map

pC: C’ZR@C — C
PE: (r,c) — ¢

is a morphism of graded coalgebras. Moreover, the morphisms po define a natural transforma-
tion p = (pc)c: VE — id.
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(2) Suppose we are given a counital graded coalgebra C' = (C,A,e) and a graded coalgebra
D = (D,A). Given a morphism of graded coalgebras f: C — D, there is a unique morphism
of counital graded coalgebras f: C — D such that fpp = f.

C’%D

N TPD
EINER

Y

D
(3) The forgetful functor V' is a left adjoint to the functor E.

v
_—
grCoalgx L grCoalg
E

Proof. (1) Let z € Mor(2) and (r,¢) € (R ® C)?. Note that tpc = id. We calculate.

(r,)A%(pe @ po)™ = ((r,0) @ (1,0) + (1,0) @ (0,¢) + (0,¢) @ (1,0) + cA* (1 ® 1)*) (pc ® po)?
cA?
= (r,c)pcA*

Hence p¢ is a morphism of graded coalgebras.
For naturality of p, let g: C'— D be a morphism of graded coalgebras. We have to show that
the following diagram commutes.

Given z € Mor(Z) and (r,¢) € C* = (R ® C)* we have

(r,Q)pg" = cg® and (r, )50 = (r,cg)pfh = cg".
It follows that pog = gpp. Therefore p: VE — id is a natural transformation.

(2) Uniqueness. Since f has to satisfy both fé = ¢ and fpp = f, we necessarily have
cf? = (ce?,cf?) for z € Mor(Z) and ¢ € C*. It follows that f is uniquely determined.
Existence. We define _ R .

fr ¢ — D=R&D

ffr ¢ — (ce*,cef?).
We have to show that f is a morphism of counital graded coalgebras. Let z € Mor(Z) and
c e C%. Write cA* = Y| ¢;®¢, where ¢; € C% and ¢, € C% are elements with z;, 2, € Mor(Z)
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such that zizz{ = z. We calculate.

Il
M:

A (f®f)? (ci®d)(f® f)
=1
ZTL
= Z lezl ® C; fz
=1
n ! !
= (e, i f) @ (e, & f7)
=1
n , n ,
= (eg® - ¢ie%,0) ® (1,0) + > (1,0) ® (0, cie™ - ¢ f5)
=1 =1
n n ,
+ Z(O,cifzi -cgs Z (0,¢; %) ® (0, f*)
=1 i=1

cfA* = (ce*, cf*)A*
= (c%,0)© (1,0) + (1,0) ® (0,¢f%) 4+ (0,¢f%) @ (1,0) + cf* A% (L @ 1)

Using the counit property A(id ®e¢) = id = A(e ® id) we obtain

n n n
Yo et det =Y (e )t = Y (cie @ ¢))e”
i=1 i=1 i=1
n
=Y (e @ &) (e @id)*e* = cA*(e @id)*e* = ce
=1
n . n Zn
et Gif = (e ) fF =D (s @) f*
=1 i=1 i=1
n
=3 (e ® ) (e ®id)*f7 = eA*(e @ id)*f* = cf?
=1
n , n , Zn )
Yoaffdet =) (- det)ff =) (a®den) f*
=1 =1 =1

I
M:

(e ® &) (id®@e)*f* = cA*(id @)’ f* = cf*

@
Il
-

and finally since f is a coalgebra morphism

n n

S0, f*) @ (0, f7) =Y (@) (f @ (@)

1=1 i=1

= cAN(f® @0 = e fF A8 )

Therefore A(f @ f) = fA, ie. fisa coalgebra morphism.
Moreover, since cf?é* = (ce?,cf?)é* = ce*, we have fé =e. It follows that f is a morphism
of counital coalgebras.

(3) The statements of (1) and (2) together are equivalent to the assertion V' is left adjoint to
E, cf. Lemma 2. O
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1.3.5 Counital tensor coalgebras

Remark 32 Let A be a graded module. For the tensor coalgebra TA = @y, A®* attaching
a counit yields the counital tensor coalgebra T'A := E (TA) = R TA = Dr>0 A®F . We
write ¢ A%% — T'A and m,: TA — A®* for the inclusion and projection of the k-th direct
summand, where k > 0.

For k,£1,05 > 0 the following hold.

(1) LkA(Wfl ® 71—52) =

A dSF if k=0 + 4o
0 else

} D ASk y A®h g A®L2 — A®(Li+L2)

(2) A(Trh ® 7742) = Ty +4o

(3) LkA = Z Li Q@ Lj
i+j=k
i,5>0
(4) Given a morphism of coalgebras f: TA — T'B between the tensor coalgebras over the
graded modules A and B, the morphism f — Ef: TA — TB between the counital tensor
coalgebras satisfies for k,¢ > 0

Jre itk L£>1
oo = wfme = idy, ifk=0=0 : A%k, Bt
0 else

Proof. (1) By definition of the comultiplication on 7'A = E(T'A) we have for an element
(r,a) € (R®TA)? = (T'A)? for z € Mor(Z) that

(rya)A = (r,0) ® (1,0) + (1,0) ® (0,a) + (0,a) ® (1,0) + aA* (¢t ® 1)*

where 1: TA — R @® TA is the inclusion into the second summand. Hence if k = 0 we obtain

for r € (R)* for z € Mor(Z) and ¢1,¢5 > 0

r for £1,65 =0

TLSAZ(Wél ®7T42)Z _ (7“, O)Az(ﬂ‘gl ® TFKQ)Z — ((r, 0) & (1,0))(7T£1 & 7T€2)Z = {0 else

If k > 1 we have for a € (A®k)z for 2 € Mor(Z) and ¢1,¢2 >0

A~

abiAZ(Wh ® 7752)Z = (O7Q)Az(7r€1 ® WKQ)Z
= ((1,0) ® (0, ac) + (0,atf) ® (1,0) + atp A% (e @ )?) (7, @ Te,)*.

If /4 =0 or 3 =0, then tmy, = 0 or vmy, = 0. So the above expression is only non-zero if
either /1 =0 and /o = k or /1 = k and f5 = 0, in both cases it equals acg.

If /1 > 1 and ¢5 > 1, the above expression equals atj A*(my, ® m,) and the assertion follows
from Remark 20.

The assertions of (2) and (3) now follow from (1).

(4) By definition, we have for (r,a) € (R®TA)? = (T'A)? for z € Mor(Z) that (r,a)f = (r, af).
Since 719 = (r,0) and arx, = (0, arg) for k > 1 the assertion follows. O
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Lemma 33 Let A and B be graded modules and suppose given a morphism of coalgebras
f:TA —TB. Then for k,{1,€5 > 0 we have

£ _ £ £ . A®k 4 R0 _ pR(L+L
Jroi 100 = E fion @ fje, + A" = B @ B2 =B (br+£2)
iti—k
1,520

Proof. We use the description of A on the counital tensor coalgebra from Remark 32. For the
left-hand side, consider

fk,fﬁ-fz = [’kfﬂfﬁ-fz = [’ka(’]T@l @ 7T52).

For the right-hand side, consider

k
Yo Jin ® fie =D (@ u—i)(f @ F)(me, @ me,) = A(f @ f)(me, @ mpy).
it+j=k i=0
4,520
Since f is a morphism of coalgebras, the assertion follows. O
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Chapter 2
A~-homotopies

Throughout this chapter, let R be a commutative ring.

All modules are left R-modules, all linear maps between modules are R-linear maps, all tensor
products of modules are tensor products over R.

Fix a grading category Z. Unless stated otherwise, by graded we mean Z-graded.

2.1 Coderivations

In the previous sections §1.2 and §1.3 we showed how one constructs the category As.-alg of
A o-algebras and morphisms of A-algebras together with a full and faithful functor

Bar: A..-alg — dgCoalg

into the category dgCoalg of differential graded coalgebras, cf. Definition 28.

Via this functor, the category Aso-alg is equivalent to the full subcategory dtCoalg of dgCoalg
of differential graded tensor coalgebras, cf. Definition 29.

We want to arrive at a definition of homotopies between A ,.-morphisms. Using the equivalence
of A-alg and dtCoalg described above, it suffices to define homotopies of differential graded
coalgebra morphisms between tensor coalgebras.

In analogy to the usual homotopy of complex morphisms, we shall define a homotopy between
differential graded coalgebra morphisms f: TA — TB and g: TA — T'B to be a graded linear
map h: TA — TB of degree —1 that satisfies f — g = hm + mh and that is in some sense
compatible with the comultiplications on T'A and T'B.

We will generalise the notion of a coderivation to the notion of an (f, g)-coderivation. The
requirement on h to be such an ( f, g)-coderivation will be the additional compatibility condition.
In this section we present basic properties of these generalised coderivations between tensor
coalgebras and show how they assemble into an A -category.

2.1.1 Definition and first properties

Suppose given graded coalgebras (C, A) and (D, A).
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Definition 34 Let f: C — D and g: C — D be morphisms of graded coalgebras. A graded
linear map h: C' — D of degree p € Z is an (f, g)-coderivation of degree p if it satisfies

hA=A(f@h+h®g).
We denote by Coder(C, D)?{/:9) the module of (f, g)-coderivations of degree p.

Remark 35 Let f: C'— D and g: C — D be morphisms of graded coalgebras.
Then the graded linear map hy g := f — g is an (f, g)-coderivation of degree 0.

Proof. We have

higA=(f-9)A=A(fa@f-g®g)
=AfR(f-9+(f-9)®9) =A(f@hsyg+hsy@g). O

Lemma 36 Suppose given graded coalgebras B,C, D and E with morphisms of coalgebras
between them as in the following diagram.

Suppose given an (f, g)-coderivation h: C — D of degree p € Z. Then sht: B — E is an
(sft, sgt)-coderivation of degree p.

Proof. As morphisms of graded coalgebras have degree 0, the graded linear map sht has degree
p. It remains to verify that sht is an (sft, sgt)-coderivation. We calculate.

shtA = shA(t®t) =sA(fRh+h®g)(t®1)
=A(s®s)(fOh+h®g)(t®t) =A(sft ® sht + sht ® sgt)

It follows that sht is an (sft, sgt)-coderivation of degree p. O

Lemma 37 (Lifting to coderivations) Let A and B be graded modules.

Let f: TA—TB and g: TA — TB be morphisms of graded coalgebras between the tensor
coalgebras over A and B. Let p € Z.

Consider the linear map
B: Coder(TA, TB)»/9) —— grHom(TA, B)?
h —— hm.

from the module of (f,g)-coderivations from T A to TB of degree p to the module of graded
linear maps from T A to B of degree p.

Recall that for a coalgebra morphism f: TA — TB we write f =FKEf: TA - TB for the
corresponding morphism between the counital tensor coalgebras, cf. Remark 32.

Consider the map o: grHom(T A, B)P — Coder(T A, TB)?'(1:9) that is for a graded linear map
n: TA — B of degree p given by

(na)k,f = Z fr,r’ R MNs X gt,t’ : A®k — B®€7
r4s+t=~k
r+1+t'=0
rritt’>0,s>1
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where k, £ > 1.
Then a and B are mutually inverse linear isomorphisms.

In particular, for an (f,g)-coderivation h: TA — T B of degree p the following formula holds
for k., £ > 1.

hk:,é = Z fr,r’ & hs,l by gt,t’ = Z fr,r’ ® hs,l X gt,t/
r4s+t=k r+s+t=k
r+14t'=¢ r+14t'=¢
rorltt’>0,5>1 r>r'>0,t>t'>0,5>1

Moreover, hy o =0 if k < £.

Proof. We show that o is well-defined. Let n: TA — B be a graded linear map of degree p.
To show that na is well-defined as a graded linear map, we have to show that for k > 1 there
only finitely many ¢ > 1 such that (na)y ¢ # 0.

We claim that (na)ge = 0 for £ > k. Indeed, given r,r’,t,t' > 0and s > 1 withr +s+t==%
and v’ + 1+t = ¢ this means that either 7/ > r or ¢ > t. By Lemma 23 a coalgebra morphism
f satisfies f; ; = 0 whenever j > ¢ and using Remark 32 also f satisfies fi,j = 0 whenever
j > i. Hence for £ > k we have

(na)k,f = Z fr,r’ ®ns @ g = 0.
r+s+t=k
' +1Ht'=L
rr ' >0,5>1

This shows the claim. In particular, na: TA — T'B is a well-defined graded linear map.

It remains to show that na is an (f, g)-coderivation, i.e. it remains to show that na satisfies
(na)A = A(f ® (na) + (na) ® g). It suffices to show that

Lk(na)A(ﬂ'fl ® 7752) = LkA(f ® (7704) + (77a) ® g) (7751 ® ﬂ-@z)
for k, ¢1,¢> > 1. Using Remark 20 we obtain for the left-hand side

(@) A(me, © 7,) = 1(10) e 1,

= (Tla)k,él +L2

and similarly for the right-hand side

wA(f @ (na) + (na) @ g) (e, @ me,) = Y (1 ® 1) (f © (na) + (na) @ g) (e, @ 7,)

i+ji=k
i,j>1
= > (@) (f © (na))(my, @ m,)
i+j=k
i, j>1
+ > (L ® ) ((na) ® g)(me, ® me,)
it+j=k
i,j>1
= Z fi,Zl @ (na)j,@ + Z (na)i,fl ® Gjeo-
i+j=k i+j=k
i,j>1 i,j>1
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Using Remark 32 and Lemma 33 we obtain

(na)k,fl +L2

= Z fr,r’ X 1Ns @ L(A]t,t’
r4s+t=k
14+t =01+
roltt’'>0,s>1

= Z Jrr ®1s ® Gy + Z Jrr ®1s ® et
r4+s+t=k r4+s+t=~k
r' 14+t =01 +0o r' 14+t =01 +0o
' >0, rtt' >0,5>1 rr't>0,t' >0, 5>1
= > ot ®ns®@Gr+ > fr 0 @ Grrie
r4s+t=~k r+s+t=k
w14+t =l r' 1+ =0
raultt’>0,5>1 rorlto’>0,s>1
= > > i ®few@ns®@ae+ Y Yo frr @05 @ Gitar @ Gty
r+s+t=k i+i'=r r+s+t=k  j'+j=t
u/+1+t'=ly i,i'>0 r+l4v'=0 4 5>0
raultt’>0,s>1 rrlto’>0,s>1 N
= Z fi,Zl ® fi’,u’ X MNs ® gt,t’ + Z fr,r/ ®1Ns ® gj’,v’ & gj,ﬁg
i+i' +s+t=k r+s+j'+j=k
w14+t =l r' 140" =0
i,i',u’,t,t’ZO, s>1 T,T’,j'vj,v'ZO, s>1
= > fitr ® firw ® s ® Gup + > Jrat @0 @ Gjr o © gjigy
i+i' +s+t=k r+s+j'+j=k
u' +1+t' =0 r'+1+v' =0
i>1, ¢t >0,5>1 i>1,7r 50 >0, s>1
=> > fia®frw®n®@fp+ Y Yo frr @0 @0y @ giay
i+j=k  i'tsti=j itj=k  rds+j'=i
5,j21 w1+t =0 L,j21 10’ =4
it t'>0,5>1 rr' i 0’ >0,8>1
= Z fi,[l ® (na)j,€2 + Z (na)i,fl ® 9j,0o-
i+j=k i+j=k
3,521 1,521

Hence na is an (f, g)-coderivation, i.e. « is well-defined.

We show that a8 = id. For this, let n: TA — B be a graded linear map of degree p. We
have to show that (na)f = (na)m; = n. It suffices to verify that for £ > 1 the equation
tk(na)m = (na)g1 = nr = vgn holds. By definition of a we have using Remark 32

(na)k,1 = > frwr @Ns @Gy = D fro®ns @G0 = fo.0 @ e © Joo = k-
r+s+t=k r+s+t=k
r'+14+t'=1 r,t>0,5>1

ror! 4 t'>0,5>1

We show that [ is injective. For this, we show that its kernel is trivial. Let h: TA — T'B be
an (f,g)-coderivation of degree p such that h3 = hm; = 0. We have to show that h = 0. It
suffices to verify that (zh = 0 holds for k£ > 1. We proceed by induction on k.

For k = 1 we have tihA = yuA(f ® h+ h® g) = 0, since h is an (f, g)-coderivation and
11A = 0. Using Remark 19 we conclude that t1h = t1hmie; = ¢t1(h8)e = 0.

Now let £ > 1 and assume that ¢yh = 0 for £ < k. Since h is an (f, g)-coderivation we have
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using Remark 20

whA = 4 A(f@h+h®g)= Y (i®@y)(f@h+heg)
it+j=k
i,j>1
= Y (uf ®tih+1h@1g9) =0

itj=k

5,521
In the sum on the right hand side, both ¢ and j are strictly smaller than k, hence all summands
are zero by induction. It follows that (zhA = 0, so again using Remark 19 we conclude that
Lkh = Lkhﬂlbl = Lk(hﬁ)bl = 0.
Hence $ is an injective linear map with a8 = id. Therefore a and § are mutually inverse
linear isomorphisms.

For an (f, g)-coderivation h: TA — T'B of degree p we have

hk,( = (hﬁa)k,f = Z fr,r/ b2y (hﬂ)s & gt,t’ = Z fr,r/ b2y hs,l & gt,t’
r+s+t=k r+s+t=k
14+t =L 14+t =L
rol 4t >0,5>1 rol 4t >0,5>1

for k,¢ > 1. Here we used that (h3); = (hm1); = tihm = hy 1.

Finally, at the beginning of this proof we showed that for a graded linear map n: TA — B
of degree p one has (na)y¢ = 0 whenever ¢ > k. Since hy ¢ = (hfa)y, it follows that also
hi.¢ = 0 whenever ¢ > k. O

Corollary 38 In the situation of the previous Lemma 37, let h: TA — TB and h: TA — TB
be (f, g)-coderivations of degree p and let k,¢ > 1.

Suppose that hs1 = 5571 for1<s<k—{+1. Then hyy = iLM.
Proof. This follows from the second formula for hj, in Lemma 37. ]
Corollary 39 In the situation of Lemma 37, the inclusion
j:  Coder(TA, TB)»\9) < grHom(T A, TB)?
is a split monomorphism.

Proof. Using the o from Lemma 37, we define the linear map

r: grHom(TA,TB)? — Coder(TA7TB)p7(f,9)
o — (pm)a.

For an (f, g)-coderivation h: TA — T B of degree p we have again using Lemma 37
hjr = ((hj)m)a = hfa = h.

Hence jr =id, i.e. j is a split monomorphism. O
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2.1.2 The complex of coderivations

Let (C,A,m) and (D, A, m) be differential graded coalgebras.
Lemma 40

(1) The Z-graded linear map

w: grHom(C,D) —— grHom(C, D)
pP: ¢ — pm—(=1)Pmp

is a differential on grHom(C, D), i.e. it is of degree 1 and satisfies u? = 0.

(2) Suppose given a graded linear map ¢: C — D of degree p € Z. Suppose given k > 1 and
graded linear maps ¢;: C — D of degree p; € Z and ¢}: C — D of degree p; € Z for 1 <i <k
such that oA = Y% | A(p; @ @)). In particular, we have p; +p; = p for 1 <i < k.

Then the following equation holds.

k
(prP)A = Api @ (Pipf?) + (=17 (i) © ¢))
i=1
Proof. (1) For a graded linear map ¢: C' — D of degree p, the map pm — (—1)Pmy is a
graded linear map of degree p + 1. It remains to verify the differential condition p? = 0.

op® = (em — (—1)Pmep)
= (pm)pu — (=1)P(mp)p

p+1 p+1

= pmm — (=1)""mem — (=1)" (mem — (=1)"" mmyp)
= (=D)Pmem — (=1)"mem

=0.

(2) Recall that m is an (id, id)-coderivation, i.e. it satisfies mA = A(id ® m + m ® id). Note
that we have to take the Koszul sign rule into consideration. We calculate.

(er)A = (pm — (=1)Pme) A
k
= pA(ldem+m®id) — Y (—1)PmA(p; ® ¢})
=1
k
Alpi @ g)(id@m+m®id) =Y (-1)PA(d@m +m @id)(p; ® ¢})
=1
k
A @ gim+ (1P (oim @ ¢})) = 3 (—1)PA((—1)P (p; ® meg}) + mp; @ @)
=1

I

N
Il
a

I

@
I
—

A(pi @ gim — (1P (g; ® m}) + (—1)Pi(pim @ ) — (—1)P (mep; ® ¢}))

I
.M?T

s
Il
—

A(pi ® (ghm — (=1)Pimegh) + (—1)P (gim — (—=1)Pimp;) ® @)

I

@
I
—

A(pi @ (i) + (—1)Pi(pip) ® &) 0

|

s
Il
—

45



Definition 41

(1) We define the grading category Zc p := Z x Pair(dgCoalg(C, D)), cf. Example 4 and
Definition 5.

(2) We define the Z¢ p-graded module of precoderivations PreCoder(C, D) that has at
(p, (f,g)) the module

PreCoder(C, D)P(1:9) := grHom(C, D)? = {¢: C — D : f is a graded linear map of degree p}

for p € Z and differential graded coalgebra morphisms f, g € dgCoalg(C, D).

(3) We define the Z¢ p-graded module of coderivations Coder(C, D) that has at (p, (f,g))
the module of (f, g)-coderivations of degree p, i.e.

Coder(C, D)Pv(fvg) _ {h: CoD- h is a graded linear map of degree p }

and satisfies hRA = A(f @ h+ h® g)

for p € Z and differential graded coalgebra morphisms f, g € dgCoalg(C, D).
Note that Coder(C, D) C PreCoder(C, D).

Lemma 42 Consider the Z¢ p-graded coderivation

m: T PreCoder(C,D) —— T PreCoder(C,D)

on the tensor coalgebra (T PreCoder(C, D), A) over PreCoder(C, D) with mf:gf’g) = P and
with mii(lf’g) =0 for k > 2, where p € Z and f, g € dgCoalg(C, D), c¢f. Lemma 22.(2).
Then (T PreCoder(C, D), A, m) is a differential Zc p-graded coalgebra.

Proof. It remains to show that m is a differential, i.e. that m? = 0. By Lemma 24.(1) this is
equivalent to

0= Z (id®r ®ms,1 ® id®t)mr+1+t,1

r4s+t=k
rt>0,s>1

for k > 1. But since my 1 = 0 for k£ > 2, this condition reduces to m; 1m;; = 0. However, by

Lemma 40.(1) the graded linear map p is a differential, i.e. it satisfies pPuP*! =0 for p € Z.

Since mlfjgf’g) = pP, also my 1 is a differential, i.e. satisfies mﬁ’:gf’g)m’ﬁl’(f’g) =0for p e Z and

morphisms of differential graded coalgebras f, g € dgCoalg(C, D). O
2.1.3 Tensoring coderivations

Let A and B be graded modules.
Recall the tensor coalgebras (T'A, A) and (T'B, A) over A and B, cf. Definition 18.

Definition 43 Let n > 1. Suppose given morphisms of graded coalgebras f;: TA — T'B for
0 < i < n. Suppose given p; € Z for 1 <i <mn and let p:= ", p;. Define the linear map

Tn:  Coder(TA, TB)Yvol1) @ . @ Coder(TA, TB)Prn-1./2) s  grHom(T A, TB)P
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for h; € Coder(T A, TB)P-fi-.J) for 1 <i < n by

((hl ®R...xQ hn)Tn)k,E = Z (fAO)ro,'r(’) ® ® ((hﬂ)sg,l ® (fﬂ)”‘ﬁﬂ‘g)
ro+ (oG-, setrs) =k =
rot (3G, 1475) =¢

/ /
705y Ty (e ey Ty 20, 81500,80 21

= Z ® <(f/3—1)1“,81,7“;3_1 ® (h5)53,1> ® (f”)rn,r;
(22:1 TB—1+85)+rn:k p=1

n
(Zﬁ:l 7"2371+1)+r§l:£
705y (e 20, 81,000,801

for k,£ > 1.

Note that by Remark 44 below, given k > 1 there are only finitely many ¢ > 1 such that
(M®...® hn)Tn)k ;7 0. Hence (h1 ® ... ® hy)7y, is well-defined as a graded linear map.

Remark 44 Suppose given the situation as in Definition 43.
(1) fk < £, one has (M ®...®hy)7), , = k(M1 ® ... ® hyp)7) T = 0.
(2) If £ < n, one has ((h1 ® ... ® hyp)m) 7 = 0.

Proof. (1) Using Lemma 23.(1) and Remark 32.(4) it follows that one has (f;);.¢ = 0 whenever
k < £. So a summand in the formula for ((h1 ®... hn)Tn)k P in Definition 43 is non-zero only if

rg > r% for 1 < B < n, which implies that k = rg + (Zgzl rg+8g) > 1)+ (Zgzl 1+ r’ﬁ) = /.
Therefore we have (b ®...® hn)Tn)/H =0for k< ¥.

(2) Note that for & > 1 in the formula for ((h1 ®...hn)7,), , in Definition 43 a summand is
non-zero only if n < rj+ (35 1 —H“’ﬁ) = {. Thus ¢ < n implies that ((h1 ®...®hy)7n), , =0
for k > 1, hence ((h1 ® ... ® hy) )7 = 0. d

Remark 45 Suppose given morphisms of graded coalgebras f,g: TA — TB and p € Z.

(1) For an (f, g)-coderivation h: TA — T'B of degree p we have hm = h.

(2) The morphism 71 : Coder(T'A, TB)P\/:9) — grHom(T A, TB)? is a split monomorphism.

Proof. (1) This follows from Lemma 37.
(2) By (1), 7y: Coder(T A, TB)P\/:9) — grHom(T' A, TB)? is the inclusion map and hence
split monic by Corollary 39. 0

Lemma 46 Let n > 1. Suppose given graded coalgebra morphisms f;: TA — TB for
0 <i < n and (fi—1, fi)-coderivations h;: TA — TB of degree p; for 1 < i < n. Then the
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following equation of graded linear maps from T A to TB @ T'B of degree Y i p; holds.

(M ®...0hy)Th) A =A(fo® (h1 ®...® hy)Ty

n—1
+Y (M®...®he)Ta® (hat1 ® ... @ hn)Tn—a

a=1
+(hl®®hn)7—n®fn)

Proof. 1t suffices to show that for k, ¢1,¢2 > 1 we have

t((h1 ® ... @ hy) ) Ao, @ a,) = A (fo @ (1 @ ... @ hy)Ty,

n—1
Y (M®...®ha)Ta ® (hat1 ® ... ® hn)Tna
a=1
+ (h1 @ ... ® hp)Tn @ fr) (7, @ Tey). (*)

Using Remark 20 the right-hand side equals the following.

LkA(fo ® (h1 ®...® hy)Ty

n—1
+ Z(hl R...Q ha)'ra ® (ha+1 ®...0 hn)Tnfa

a=1

+ (M ®...0 hp)TH ® fn)(ﬂ-ﬁl ®7T€2)

=) (i®y)(fo® (M &...® hp)Tn) (e, @ 7g,)
it ik
ij>1

n—1
+ Y D (i) (M ®... @ha)Ta ® (hat1 ® ... ® hp)Tn_a) (T, © Tgy)
itj=k a=1
2,7>1
+ D (@) (M ® ... @ hy)Tn ® fn) (T, @ 7,)

i+j=k
6,521

= > (fo)ie ® (M ®...® hn)7)
i+i=k
',j>1

j’€2

+ Z Z hl . ha)'ra)i’él & ((ha+1 ®...Q0 hn)Tn—a) ;

‘77£2
a=1 i+j=k
5,521

+ Z hl ® . hn)Tﬂ)@gl ® (fn)j,ég (**)

i+j=k
4,521
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We proceed with the left-hand side of (x), again using Remark 20 and Definition 43.

e ((h1 @ ... @ hy)Tn) AT, ® Tp,)

RZZO Lk((hl X...Q hn)Tn)ﬂ-fl—‘rfz

= ((hl@ ®h) )kg1+52

D 43 2
= Z (fo)ro,r6 X
ro—i—(zg:l S/g-l—r[;):k B

rhH (5 147 =i+
7"07---77'7177'67---77';207 S15e,5n 21

E

((hﬁ)s;s,l ® (fﬁ)rﬁ,rg>

1

= Z (fAO)rg,r’o b2y ® ((hﬂ)SB,l & (fﬁ)rg,r%)
TO*(ZZ | sptrs)=k A=1

(ZB 11+T ) =li+L2
£1<T0
T0yeees s Ty 20, 81,500,860, >1

n—1 n
+ Z Z (fO)ro,r(’) ® ® ((h‘,@)sﬁ,l ® (fﬁ)rg,r%)
o=t ro+ (X2, se+rs) =k =t
7‘0+(Zﬂ L 14 ) =l1+42

+(Zg=1 1+Tﬁ)+1§£1§T0 (Zﬁ:l l+r%)
TO e T, Ty 5oy T 20, 81,000,860 2>1

n
+ Z 7“077“0 ® ( (hs) sp,1 & (fﬁ)rg T/ )
ro+ (35, setre) =k p=1
T6+(ZZ:1 1+7’;3):£1+€2

n—1

! !
o+ ( o 1+rﬂ)+1§51
T'O:"'7Tn7,’167"'77‘41207 S1y00ySn>1

We continue by considering the preceeding three summands separately. We make use of
Remark 32.(4), Lemma 33 and Definition 43. We start with the first summand.

Z fO ro,r6 ® ® ( hﬁ sp,1 ® (fE)TBT >
T0+(Zg:1 sgtrs) =k =

rot (5, 1) =t
£1<r,
TO?"'vT‘an‘(ljv"'ar'InZO7 81,...,8n.>1

= ) (fO)rotrtut, © ® ( h)sa1 © (f6)ry )

T0+(Zg 1 83+7‘B)=k

U0+(Zﬁ 11+r ) =l2
705 77’n7u077"17 ,1” >0, 81,...,5n>1
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L33 P 3 = ;
= )3 > Fodits ® ooy ® @ ((hi)sa @ Gy,
ro+(Xh_ysetre) =k TIeSe =

n
“6+(25 11+T ) =l
T oo T UG, T 5T 20, 81,000,850, 21

A

= > (fo)ie, ® (f0)uguy ®
i+u0+(ZZ:1 sptrs)=k p

’ n /)_
u0+(Zﬁ:1 147y =l
§yUO,T 15wy Ty UG, T ] 55T, 20, 81,500,821

R 324 3 (fo)ier @ (Fo)uou ® ( (h8)531® (F3)nsr, )

ituo+ (35, sptrs) =k

/ n ’ )_
“0+(25:1 1+Tﬁ =l2
u077‘1»"'77"”7“677‘/17""7‘;1207i751>~~~7sn21

n
= Z Z (fU)Z 51 uo,uo ® ( hﬂ 53,1 & f )Tﬁ,'f‘%)
Z;rj]z:lk “0+(ZZ:1 sptrs)=j B=1
g+ (S, 1) =t

1o /
u07r17'--7rn7u07T17---7rn207 517---75n21

D4
= S ()i ®(m®...® ha)Ta) 1.,
i+j=k
ij>1

E

(<hﬁ)sﬁ’1 ® (fﬁ)rﬁ,wﬁ>

1

We proceed with the second summand, for 1 <a <n — 1.

n
)3 W@ @ (511 (Gl
ro+ (35, se+rs) =k =1
ra+(zz | L) =i+
PR ETY )+1§elgr6+(273:1 1+7%)
7'0» :Tnﬂ"()y T 20,851,080 >1

(X mao1tss)+rat (5o, so+7s) =k
(Z;=1r/ 1+1)+T +(Z[3 a+1 1+ ) =l1+L

(Z;=1 271+1)§€1§(Zﬁ:1 23—1+1)+Ta
T0 5oy (e T 205 81,500,801

7"0"‘(

a
® (s 1, © 09)02) & Gl ® @ ((s)os @ (s, )
ps=1 B=a+1
(273:1 r5*1+85)+7ﬂa+(22=a+1 55+Tﬂ):k
Yo T ) e+ (DG ) =i+t

B=1"'B-1 B=a+1 B

(Zg:l rlﬁfl"’_l) <, (Zg:a-H 1+T’B) <t

Ty (e 20, 81,500,801

a
® (s )1, ® 019)02) & Gl ® @ ((s)os @ (s, )
ps=1 B=a+1
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(2?3:1 TﬂflJrsﬁ)*’”aJr(ZZ:aﬂ SB‘H"ﬁ):k
(ZZ=1 7”lﬁflJrl)Jru =l1, v +(ZZ a+1 1+T23)262

/ !
TOyee ey TR see Ty 1,u A ra+1, T >0,81,..,8n,>1

® (s, ® i) © Godeanto, © @

B=1 B=a+1

L > >

(22:1 Tﬁ*1+sﬂ)+ra+(zgza+1 55+Tﬂ):k uﬁ;zz;sa

(22:1 7‘,?3—1"'1)"'“ =t ”a"'(zzﬂzﬂ 1+7’;3)262
T ey Ty T e Ty 1 Uiy Ul T 71,20, 81,...,sn>1

( hg)ss1 ® (Fa)ry )

a+12""

a

® (s 1, ® 9102 @ Gl ® Godoair ® @ ((s)oss @ ()
p=1 B=a+1

(Zgzl ’”ﬁ—1+3ﬂ)+“a+”a+(zzza+1 85+rﬂ):k
Za: 1) dug =01, v+ Zn 1+r’ =/ls
B=1"8 B=a+1

705y a—1,UasVa,Tat 1T 0T _ 13U sVas g 11T >O 81,380 >1

a

® ((fﬁ_l)rﬁlﬂ"z_g ) (hﬁ)sa, ) (fa)ua,U’ ® (fa va,vl, @ ® ( hﬁ sg,1 ® (fﬁ)rgr >
p=1 B=a+1
z:rjjglk (3% ro—1+ss) tua=i, vt (35_, | s5+75)=]

(22:1 Tfi—l"'l)"'“it:[l’ vﬁ(ZE at1 147 )Ze?
7'07~~~77’a717uayvayra+l:-~~7Tn:T67--~7T; 17“ Ua7Ta+17 77,20, 81,.0,80,>1

a

@ (Fothesry, ® (hina ) © Lo, © G @ ® (o0 ® G,
ps=1 B=a+1
z:rf;k (22:1 rg-1+sg)fua=i ”a+(ZZ:a+1 sptrg)=j

(35 7oy +1) +uh=ta v +(ZZ g 1Y) =t
705y Ta—1,UasThs T _ 1 U 0,81,08a>1 VasTat1s0Tn, Ve o 15020, 8at 1,80 >1

a

® ((fﬁ—l)rﬂ_hré 1 (hﬁ)s,g, ) (fa)ua,u’ & (fa Va, Ul ' ® ® < hﬁ sg,1 ® (fﬂ)rgr >
p=1 B=a+1

D 43
= Z (Mm®...® ha)ra)m1 R ((hat1®...® hn)rn_a)ﬂ2

i+j=Fk
i,j2>1

We still have to consider the last summand.

Z ror0® ®<h6 85,1® fﬁ)rﬁr)
ro+ (35, sptrs) =k
rot (35, 1475) =ti+£2

n—1
7*6—&-(25:1 1+r’5)+1§€1
"107"'7,"7177‘67""7‘4120’ S1yeeySn>1

o1



A

= Z ® ((fﬁ—l)rﬂ_m"g_l ® (hﬁ)sﬂ,l) Y (fn)rnﬂ”il
(Zzzlrﬂ—l‘i‘sﬁ)-i—rn:k p=1

(ZZ:l 7"2371-{-1) +r%:€1+€2
Lo<r],
PO Tty 20, 8180 1

n
= Z ((fﬁ—l)’rﬁl:r,lg_l ® (hB)SB,:l) ® (fn)Tn7U{,L+Z2
(22:1 rﬁ—1+35)+7”n:kj /8:1
(X 1) +un=t

! / /
705"y Ty s Ty 15U 20, 81,500,680 >1

Z n
L 33 A ) A
Z_ ® <(fﬂ 1)T/3—17T23—1 ® (hﬁ)s,371> ® (.}n)umu’71 ® (fﬂ)j,&
(2211 8-1 55) -rn=k uun ]J>1(ﬂ)n A=l

(s mho ) Fun=t1
TOseees T (oo Ty 15U 20, 81,0580, >1

(ZZZl 7’6—1+8,3)+un+j:k B

n / [
(25:1 7"5—1+1>+“n751
JoT0se s 1yUn Ty ey Ty 1 U >0, 81,000,850, >1

R 32.(4) n R A
= Z ® ((fﬁl)'rﬁ—Lr’Bl ® (hﬂ)S[g,l) ® (fn)un,u’n ® (fn)j,fg
(ZZ:1T671+85)+un+j:k p=1

(5o ooy +1) +up=0

/ ’ ’ :
T0s-+sTn—1,Un,Tg,.- 5T Uy >0, 7,81,...,8n2>1

n—1’
> 3 A
— Z Z ® ((fﬂl)?’ﬁlﬂ",;ﬁl b2y (hﬁ)SB,l) & (fn)un,ug ® (fn)j,£2
Zjv_fzzlk (Zzzl T571+55)+un:i 6:1

n / /I
(Zﬂ:l r671+1)+un_81
To,...,’rn_l,un,Té,...,T;71,U%ZO, S15y8n 21

D 43
= Z ((h‘l ® e ® hn)Tn)i,£1 ® (fn)],ég
i+j=k
i,52>1
Comparing the results of these three calculations with (x*) shows that () holds true. O

Definition 47 Let A and B be graded modules. Suppose given differential graded tensor
coalgebras (T'A, A, m) and (T'B, A, m), cf. Definition 29.

Given k£ > 1, the graded linear map 73 from Definition 43 defines a 274 7p-graded linear map
tr:  Coder(TA,TB)** —— PreCoder(TA,TB)

with

(hl ... hk)ti’(fo’fk) = (hl ®...® hk)Tk;
for fo,..., fr € dgCoalg(T' A, TB), po,...,pr € Z and (f;—1, f;)-coderivations h;: TA — T'B
of degree p; for 1 <i¢ < k and p:= Zi?:l Di-
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By Lemma 22 the tuple (t;)r>1 defines a morphism of Z74 rp-graded coalgebras
t: T Coder(TA,TB) — TPreCoder(T'A,TB)
with fk71 = tk.

In Theorem 49 we will construct a differential on 7" Coder(T'A, TB) such that t becomes a
morphism of differential Z74 7p-graded coalgebras, where T PreCoder(T'A, T B) is endowed
with the differential m from Lemma 42.

Lemma 48 The morphism of Zra rB-graded coalgebras
t: T Coder(TA,TB) — TPreCoder(T'A,TB)
from Definition 47 is injective.

Proof. Given p € Z and f, g € dgCoalg(T A, TB), we have t’f:gf’g) = 71. By Remark 45.(2) the
graded linear map 71: Coder(T' A, TB)P\/9) — PreCoder(T A, TB)P(/9) is a split monomor-
phism, hence t; 1 is a split monomorphism. Therefore t is injective by Lemma 25. (I

2.1.4 The A_-category of coderivations

Let A and B be graded modules.

Suppose we are given differential graded tensor coalgebras (T'A, A, m) and (T B, A, m), cf.
Definition 18.

Recall the Zr4 7p-graded module of precoderivations PreCoder(T'A, TB) and the Z74 1p-
graded module of coderivations Coder(T'A, T'B), cf. Definition 41.

Recall the differential m on the tensor coalgebra (T'PreCoder(T'A,TB),A) that makes
(T'PreCoder(T'A,TB), A,m) into a differential 274 7p-graded coalgebra, cf. Lemma 42.

Recall the morphism of Z7 4 7p-graded coalgebras t: T'Coder(T'A, TB) — T PreCoder(T'A, T B)
between the tensor coalgebras over Coder(T'A, T'B) and T PreCoder(T'A, T B), cf. Definition 47.

Theorem 49 There is a uniquely determined coderivation
M: TCoder(TA,TB) —— T Coder(TA,TB)

such that Mt = tm and such that (T Coder(T'A,TB), A, M) is a differential Zra TB-graded
coalgebra.

T Coder(TA,TB) —*— T Coder(T A, TB)
J )
T PreCoder(T A, TB) —— T PreCoder(T' A, TB)

Le. tis a morphism of differential Zr s TB-graded coalgebras between (T Coder(T'A, TB), A, M)
and (T PreCoder(T'A,TB), A, m).

In particular, the following formulas hold.

Migtia=t,miy  and Moty =ty 1my — (d® M+ M ®id)ta
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Proof. Uniqueness. Suppose also M: T Coder(T A, TB) — T Coder(T A, TB) is a ZrATB-
coderivation with Mt = tm. Then Mt = Mt. Since t is injective by Lemma 48, this implies
M = M.

Ezistence. We claim that for k > 1 there exist Z74 7p-graded linear maps

M.  Coder(TA,TB)®* —— Coder(TA,TB)

of degree 1 such that

k
! . .
0= tk71m1,1 — E g (1d®r QM @ 1d®t)ti,1 (*k)
i=1 r4+s+t=~k

r+l1+t=1
r,t>0,s>1

k
=tpami1— Y (1d¥ @M ®@id® ),
i=1 r4+t=i—1

r,t>0
holds. Note that only 2y with s < k appear in this equation.
We prove the claim by induction on k.
For k = 1, suppose given p € Z and f,g € dgCoalg(T'A,TB) and an (f,g)-coderivation
h: TA — TB of degree p. Recall that tf:gf 9) — 71 by Definition 47 and thus by Remark 45.(1)

the morphism t; 1: Coder(T'A,TB) — PreCoder(T'A, T B) is the degreewise inclusion. Recall

from Lemma 42 that mljgf 9) = uP with the differential p from Lemma 40. We have using

Lemma 40.(2)

(et A = ()A

L 40.
SON(F @ hp? + (~1P fi @ b+ h @ g + by @ g)

= A(f @ hpP + hp? @ g)
= A(f @ (W) 4 (P ) @ )

)

Here we used that fu’ = fm —mf = 0 since f is a morphism of differential graded coalgebras.

Similarly, we have gu® = 0. It follows that ht:’l’:gf 9 )mﬁoﬁf 9) i again an (f, g)-coderivation. Thus

there is a Z74 rp-graded linear map 9M;: Coder(T'A, TB) — PreCoder(T'A, T B) of degree 1
such that tl,lml,l — mlle =0.

Now let £ > 1 and suppose that the Zra rp-graded linear maps 9, have already been
constructed such that (%) holds for ¢ < k.

We have to show that there is a 274 7p-graded linear map
My : Coder(T'A, TB)®* — Coder(T' A, TB)

of degree 1 such that (x) holds. Consider

2
My o= tgameg =y Y (¥ @M1 @id™ )1

=2 r+t=i—1
r,t>0
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Suppose given pi1,...,px € Z, fo,...,fr € dgCoalg(TA,TB) and (fi_1, fi)-coderivations
hi: TA— TB of degree p; for 1 <i <k. Let p:= Zle ;.

We show that (h ® ... ® hk)iﬁtp’(fo’f’“) is an (fo, fx)-coderivation of degree p + 1.

Given 1 <i<j <k, we write h® ] =h;i®hiy1®...®h; and h[Hw =idp for 0 <i < k—1.

[6.7
Recall that we sometimes omit the degrees on graded linear maps, e.g. we write 9, := smﬁ’(f 0.k),
Consider
(M®...® hk)iﬁtk)A
= ((hl @ ... ® hg)tg1my 1) A
- Z Z ZB koey1 P8 ((h([gi n® h%+1,r+k—z‘+1}fmk—i+l ® h([%—t+1,k])ti,1)A- (%)
=2 r+it=
r,tZO

We proceed with the first summand in (#x). Using Lemma 42 and Definition 47 we have
((hl R...Q hk)kaImlyl)A = ((h1 ®...Q hk)TkM)A-

By Lemma 46 we have

((h1® ®hk)Tk)A A(fo@h[lka-i- ( Z h Ta®h[k b, k]Tb> +h[1 k]Tk®fk>
aa—t-bbzlk
Hence we can apply Lemma 40.(2) and obtain

= A(fo ® b it + (=1 fou ® b3 7

+ (X B gra @b ) + (D (-1 e WP R Tl @ By )
atb=k a+b=Fk
a,b>1 a,b>1

+hﬁka®fku+hﬁkaM®fk)

= A(fo ® B Tk + ( > h[l oo ® R pin, k]TbM>

a+b=
ab>1
+ ( Z ( )ZB k— b+1p6h% ]Ta,,u ® h?]ﬁ)*l%l»l,k’],rb) + h%,k}Tku X fk)
aa+bb>:1k
(fo ®h[1k]tk 1my1 + ( ;khla a,1 ®h[k bt1 k]tblml 1)
an,rbz_l
> P} ® ® ®
+ ( Z (—1)&=p=k-b+1 5h[1’a]ta,1m1,1 & h[k7b+1,k]tb71) + h[l,k}thlle ® fk)
a+b=k
a,b>1

(k)

Here we used Lemma 40.(1) to conclude that fu = fm —mf = 0 for morphisms of differential
graded coalgebras f: TA — TB. Moreover, in the last step we made use of Lemma 42 and
Definition 47.
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We continue with the second summand in (x%). Note that by the induction hypothesis

hf?,ﬂ T+k_z.+1}imk_i+1 is an (fy, frak—sr1)-coderivation for 2 < i < k. Hence we can apply

Lemma 46 and obtain

k
Z > (_1)2’3:'“_”1[)6 ((h% r ® h([%—&-l,r—o—k—i—&—l]mk—i'i‘l ® h([?;—t+1,k})ti,1)A
k
= Z Z (—1)2‘3:’“_‘“% ((hﬁ,r] ® h%+1,r+k7i+1]mk—i+1 ® h([gliftJrl,k})Ti)A
- Ny
= Z Z ( ) A=k— t+1pﬁA<f0 ® ( (1,7] ® h[r—i—l r+k— z—l—l]mk i+1 ® h[k; t+1 k])

+ ( Z (h[% 7] ® h[r+1 r+k— 1+1}fmk—i+1 ® h([??;ft+1,kfi+a’])7-a' ® h?;fi+a’+1,k]7—i*a/>
a’'=r+1

(Z h[l a]Ta a+1 7] ® h[r—i—l r+k— H—l]mk i+1® h[k t+1 k])TZ a)

(hﬁ) r @ h§+1,r+k7i+1}9ﬁk—z‘+1 ® hﬁftﬂ’k])n & fk>

(fo ® (Zg Z Zﬁ e ((hﬁ ] hﬁ+lvr+k—i+1lmk—i+1 ® hﬁi_m’k])n)
1 r+t=
r,tZO

k
+>0> >
i=2 rt=i—1 o'+b=i
>0 o/>r+41,b>1

(-1 )25 b-t41 PP (h([gi r ® h[r—i—l rth—i1] ki1 @ h([?;—t—o—l,k—i—i-a’})ﬂl/ ® h([%;—b—&-l,k]Tb
k
D IED DD

i=2 r+t=i—1 aq4b'=i
rt>0  g>1,0/>t+1

(-1 )Z’B k- mpﬂhﬁ alTa ® (h[a+1 7] ® h[r+1 r+k— z+1}9ﬁk_i+1 ® hfeléftJrl,k})Tb’

(Z > Z‘* hot41 P ((h([gi 1 OB higy M—it1 © h([gliftﬂ,k])”)) @ f’“)
=2 rtftZO
(sokokok)

We consider the second and third summand of (x*#x) separately. For the second one, we
obtain

k
=2 r+t=i—1 a’+b=1
20 o/>r41;6>1
p &
(-1 )Zﬁ k—t+1 P8 (h[ 1] ® h[rJrl ek z+1]9ﬁk it1 @ h[k 1k z+a’])Ta' ® h[k b1,k T

o6



=2 a'4+b=i r+t=i1—1
a',b>1 a/'—1>r>0;t>b
S Ps (1 ® ® ® ®
_ =k—t+1 )
(=1)=» (g @ Myt iy =it @ Mgyt 4 i a) Tar @ Ag_gq g7
k
=2 o/ +b=i r4+u=a’'—1
a’,b>1 ru>0
S P8 (1@ ® ® ®
_ B=k—b—u+1 )
(1) (P © Pt i) k=it @ Byt o) T @ By g7
a'+b+j=k r+u=a’—1
a' b>1;7>0  mu>0
S Ps(1® ® ® ®
_ =k—b—u+1 .
(=1)=» (Pt @ Pt ey M1 © Py ) Tar @ Ap_q g™
a
at+b=k a/=1 r4+u=a’—1
a,b>1 rau>0
S5 Ps(1® ® ® ®
— =k—b—u+1
(—1)=s “ (h[u] By Pa—ar 41 @ h[k—b—u—i—l,a])T“' @ g _pyq T

a
=2 > X
a+b=k i=1 r+t=i—1
a,b>1 >0

k
a1 PE (1O ® . .
(—1)23‘ o1 7 (h[l,'r’] @y ppamivn) i+l @ h([%—tﬂ,a])ﬂ ® h%ﬂ,k]n’

a k
= zb:k 2; S ()P (b (A @My ©1d%))m @ hE
at+b=k i=1 r4t=i—1
a,b>1 r,t>0

We proceed with the third summand of (k%) .

k
> X X
=2 r+t=i—1 q+b =i
>0 o>1; 0 >t+1

k
e PR ® ®
(—1) 2=kt Ph g 7a @ (Wpy g ® Wiy it ® By )Ty

k
=2 atb—i  ri—i—1
a,b'>1 r>a;b'—1>t>0

k
g P11 ®
(—1)25"“ R Ta ® (h([?;—i-l,r] ® h%+1,r+k—i+1}9ﬁk—i+l ® h([%—t—i-l,k])Tb'

k
=2 > X
1=2 q+b'=i utt=b'—1
a,b'>1 u,t>0

k
(,1)Z,B=k—t+1 bp hﬁ,a] To ® (h®

® ®
[a+1,a+u] ®@h My—iv1 @ h[kftJrl,k])Tb'

[atu+1,a+ut+k—i+1]

o7



= 22

a+b'+j=k ut+t=b'—1
ab'>1;5>0 u,t=0

(-1 )ZB - “lpﬁh([g aTa ® (h[a+1 atu] @ h[a+u+1 atutjp 1] P+ © h[k t+1 k})Tb'

¥y oy

at+b=k V=1 y+t=b/'—1
a,b>1 u,t>0

(-1 )Eﬁ h Hlpﬁh([g aTa® (his [a+1l,a+u @ h[a+u+1 atutb—b41) Db +1 @ h[k t+1 k])Tb'

at+b=k i=1 r4+t=i—1
a,b>1 r,t>0

Z Ppp® ® ®
(—1)&p=k-tt1 i) Ta © (h[a+1,a+r] B Plotr it atrtb—it]

b
Z Z Z h([gia]T“ ® (h[a+1 k] (1d®" @ Mp—j41 ® id®* ))

a+b=k i=1 r+t=i—1
a,b>1 r,t>0

My—it1 @ hiy_y 4y 49)7i

With these two results, we go back to (xx%%) and obtain using the inductive hypothesis (IH),
ie. () for £ <k,

Z > Zﬁ b <(h([g) 1] @ h[r+1 rh—i1] ki1 © h[k et 1)
=2 Tttt>0
((fo ® (Z Z Zﬁ k=t1 P8 ((h[? " ® h[r+1 rh—it1) Phk—i+1 @ hﬁ*tﬂ,k})ti’l))
+ Z Z Z ZB a+1 pﬂh? ](1d®r %) ma—i—&-l (%) id®t)ti7]_ X h%+1’k]tb,l
a+b=k i=1 r+t=
a,b>1 r,tZO

b
+ > > h%,a]tml ® h([?;-i-l,k} (id*" @My i1 ©id*) i,
a+b=k =1 r+t=i—1

a,b>1 20
(Z >« Zﬁ kot PP ((hﬁ ] © h[r+1 R hﬁ*tﬂ’k])ti’l)) ¢ fk)
=2 rttt>0
A <<f0®(z > ( 1 (1477 @My @1, ))
=2 T—i;tt>0
i Z ZB ko b+1pﬁh[ 1yt 1M ®h[k b1,k 1
aa+bb>1k

® ®
+ Z h[l,a}tavl®h[k_b+1,k}tb,lm1,1

a+b=k
a,b>1
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(Z Z ([m] (id®" @M1 ©1d¥);, >)®fk>

=2 r+t=
r,tZO

Plugging in the previous result and the result of (s*x) into (**) we obtain

(m®...® hk,)zﬁtk)A
= ((hl ® ... ® hy)tg1mi 1) A

- Z Z ZB ht1 PP ((hﬁ) r® h§+1,r+k—i+1}mk_i+l ® h([gz—t-‘rl,k])ti’l)A
=2 r+t=
r,tZO

=A <f0 ® hﬁ),k}tk,lml,l + ( > hﬁ7a}ta,1 ® h%}i,bJrl,k}tb,lml,l)

a+b=k
a,b>1

k
+ ( Z (*1)25:’“‘“1pﬁhﬁ,a]fa,lmu ® h[@i,bﬂ’k}fbg) + hﬁ),k]tk,lml,l ® fk)

a+b=~k
a,b>1
((f()@(z S (hf (@ @My @id™) 1))
=2 T—l;tt>0
+( Z ZB k- b+1p5h% ataimi ®h([§/2_b+1,k]tb71)
a+b=k
a,b>1
aa+bb>:1k
+(22 Z ( i (id®" @ My, 11 ®id®)t;, )>®fk>
1=2 r+t=
r,tZO

=A(fo® (M ®...® he) My + (b ® ... @ hy) My, @ f)

Hence the graded linear map (h1 @ ... ® hi)9My, is indeed an (fo, fi)-coderivation of degree
p+ 1. So there is a 274 7p-graded linear map 9My,: Coder(T A, TB)®* — Coder(T A, TB) of
degree 1 such that 91, = Mty 1. But then

k
tami— Y Y (1d® @My ®id®)ti,

=1 r+t=i—1
r,t>0

k
=tpami — Mt — > Y (1d®" @My ®@id® ),

=2 r+t=i—1
r,t>0

k
=tpami =DM — > Y (1d¥ @My ®1d®) i,
=2 r+t=i—1
r,t>0

=0.
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Hence we have constructed 9 satisfying (). This proves the claim.
By Lemma 22.(2) the tuple (9)x>1 defines a Zr4 rp-graded (id,id)-coderivation

M: TCoder(T'A,TB) —— T Coder(TA,TB)

of degree 1 with My, 1 = My, for £ > 1. It remains to verify that Mt = tm and M? =0.

By Lemma 36 the morphism tm — Mt is a Zp4 7p-graded (t, t)-coderivation of degree 1. Since
both t , = 0 and M}, o = 0 for k > ¢ we have using Lemma 23 for k > 1

k

k
(tm — Mt)p1 = tpimin — My tia
=1 i=1

But by Lemma 42 we have my; = 0 for £ > 2. Hence we obtain using Lemma 22.(2)

k
(tm — M’t)kJ = tmy 1 — Z Z (id®T Q@ Ms1® id®t)’£i,1
=1 r+s+t=k

r4+1+4+t=1
rt>0,s>1

k
= tpamy1 — Z Z (id®" @ M, ® id®t)t1-71
=1 r+s+t=k
r+l1+t=1
r,t>0,s>1
),

Using Lemma 37 we conclude that Mt = tm.
Finally, since m? = 0 we have M?t = Mtm = tm? = 0. But since t is injective (cf. Lemma 48)
it follows that M? = 0.
For the two formulas asserted in the end, we use again that t; ; = 0 and M}, = 0 for k < £, cf.
Lemma 23. Hence

0= (tm—Mt);; =t 1my 3 — M1t

and thus My 1t;1 = t11mq,1. Secondly, we have
0= (tm — Mt)y =toomgq + tg1myy — Mooty — Moty .

But by Lemma 42 we have my; = 0 and we have Mo = id® M; 1 + M ® id using
Lemma 22.(2). Thus Myt =ta1my 1 — (id®M1,1 + M1 ® id)f271. O

Remark 50 The differential M on T' Coder(T'A, T'B) defines an A-structure on the Zra r5-
graded module of coderivations Coder(T'A,TB). Since Zra 1 = Z x Pair(dgCoalg(T'A, TB)),
this A,o-structure is actually an A,.-category with the set of differential graded coalgebra
morphisms as objects.

This Aoo-structure has already been constructed by Fukaya [Fuk02], Lyubashenko [Lyu03] and
Lefévre-Hasegawa [Lef03]. Our approach given here is similar to the one presented in [Lyu03]
by Lyubashenko, in the sense that Lyubashenko also works on the differential graded coalgebra
side of the bar construction and not on the A.-algebra side.
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Lemma 51 Suppose given fo, f1, fo € dgCoalg(T A, TB).

Suppose given an ( fo, f1)-coderivation hy: TA — TB of degree p1 and an (f1, f2)-coderivation
ho: TA — TB of degree pa. Then the following equality of graded linear maps from A®* to B
holds for k > 1.

(1 ® ho) Mgy P20y

A

= Z ((f())rg,ré ® (h1>51,1 & (fl)rl,r’l ® (h2)52,1 & (f?)rg,ré)mr6+1+r’1+1+r’2,1

ro+s1+ri+se+re=k
T0,71,72,7(,7,75 >0, 51,52>1

Proof. Since tjf}fr pz(fof2) — o) by Definition 47 and since by Remark 45.(1) the morphism
m1: Coder(T A, TB)P1+p2:(fo.f2) 5 grHom(T A, T B)P11P2 is the inclusion we have

(h ® h2)M511+p2,(fo,f2) = (h ® hg)M2pll+p2’(f0’f2)f]f}rPQ’(fO’fQ).

)

Theorem 49 with Lemma 42 and Definition 47 then gives

(h1 ® hg)M5)’11+p27(f07f2) = (h1 ® hg)M§711+p2’(f0’fQ)t1f711+p27(f07f2)
(hl ® h2)t127711+1027(f0,f2)m11°711+p2,(fo,f2)

—(h® th{’j’(fl’f2))t§}frp2“’(f°’f2)
— (=1 (thﬁlly(fmfl) ® h2)tz2)711+p2+1,(f07f2)
= ((hy ® hg)TouP P2

— (1 ® haMPFV P my — (—1)P2 (hy MY @ o).
Note that by Remark 44.(2) we have ((h; ® hg)Tg)k’l = 0 for k£ > 1 and arbitrary coderivations
hi and hg. Thus using Lemma 40.(1)

((h® h2)M§,11+p2’(f0’f2))k,1 = ((h1 @ ho)rap**72), |
(((h1 @ ha)r2)m — (=1)P""m((h1 & ha)72)),
(((h1 @ ho)7a)m), |
We obtain using Definition 43 and Remark 44.(1)
(((h1 ® ha)T2)m), |

k
> ((h1 @ ho)Ta)kemeq

~
=

k
Z Z ((fO)TOJ‘{) ® (hl)shl b2y (fl)n,r’l & (h2)52,1 ® (f2)7"2,7"é)m£,1

{=1 ro+si1+ri+sa+ra=k
ro+1+ri+14ri=L
T0,71,72,7(,7] 7520, 81,52>1

= > ((fO)ro,r6 ® (h1)s11 @ (f1)ry,r; © (h2)sz1 @ (f2)r2,r'2)mr6+1+7"/1+1+r’2,1

ro+si1+ri+se+ro=k
! ! !
T0,71,72,74,71,75 >0, s1,522>1

0
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2.2 Homotopies

Let A and B be graded modules.

Suppose we are given differential graded tensor coalgebras (T'A, A,m) and (T'B, A, m), cf.
Definition 29.

In this section we prove that coderivation homotopy, cf. Definition 57 below, is an equivalence
relation on the set of differential graded coalgebra morphisms from T'A to T'B, cf. Lemma 61.
To prove e.g. symmetry, we need to turn (f, g)-coderivations into (g, f)-coderivations. For
this, we introduce and study the transfer morphism in §2.2.1.

2.2.1 Transferring coderivations

Suppose given morphisms of differential graded coalgebras f: TA — TB and g: TA — TB

We write Coder(T'A,TB)(9) for the Z-graded module that has at p € Z the module
Coder(T A, TB)P\/9) of (f, g)-coderivations of degree p.

By Lemma 37 there is an isomorphism of Z-graded modules of degree 0
Brg: Coder(TA, TB)9) — grHom(TA, B)
B?g: h +—— hm.

Definition 52 Suppose given fi, f2, g1, g2 € dgCoalg(T'A, T B).

The transfer isomorphism from Coder(T A, TB)/1:91) to Coder(TA, T B)\/2:92) is the isomor-
phism of Z-graded modules of degree 0

@;f:gf: Coder(TA, TB)1:9)  ——  Coder(T A, TB)/2:92)

L) 9. P— 71
given by ‘I>§igf = Brig (Bfags) -

Recall that we often write @}?:gf = (@ﬁ:gf)p for p € Z.

Lemma 53 Suppose given fi, f2, g1, g2 € dgCoalg(T'A,TB).
Then the following formula holds for an (f1,g1)-coderivation h: TA — T B of degree p € Z.

W9 = bt (o= f) @ M) — (h@ (91— g2))7a = (f2 = f1) @ h @ (91 — 92)) 75

For the graded linear maps 1o and 13 see Definition 43.

Proof. We show that the right-hand side is an ( fa, g2)-coderivation of degree p. We calculate
using Lemma 46.

(h+((fa—fi)@h) 1o — (h® (91 — g2))72 — ((fo — [1) @ ® (91 — g2))T3) A
=A(feh+heg

+ e (fo—f)@h)n+(fo—fi)@h+ ((fo—fLI))@h)T2@ g1
@ Mhe(g—g))r—h® (@1 —g)— (h® (91— 92)7® g
—fo®@(fo—[)Qh® (91 —g2))13 — (fo— 1) @ (R ® (91 — g2)) T2

~ (=)@ ® (g1 —g0) — (o~ f)@he (g1 — 0))7s) © 00)
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=A(feh+heg

+ L@ ((fo—fi)@h)rn+ ((f2—fi) @h)T® g
—fo® (h® (91 —92))72 — (h® (91 — 92)) T2 ® 92
— @ ((fo— 1) ®@h® (91— g2))T3

—((fa—=fH)@h® (91— 92))73 ®g2)
= A(f2 @((h+h@(g—g))—((fo—fi)@h)m = ((f2— fL) @h® (g1 — g2))73)

+(h+ (@ (g —g))r—((2-)@h)T—((f2— fi) @@ (g1 — g2))73) ®92)

Hence the right-hand side is an ( f2, g2)-coderivation, so we can apply the isomorphism fy, g,
to it.

(h+((fa— fr)@h)Ta — (h @ (91 — g2))72 — ((fo — [1) @ h ® (91 — 92))7T3) Ba,g
=hm + ((fo = fi) @ h)1em1 — (R ® (g1 — g2))7em1 — ((f2 — f1) @ h ® (g1 — g2)) 7371

= hm

= hff g,
Here we used that for n > 2 one has ((h1 ® ... ® hy)7,), | = 0 for k > 2, cf. Remark 44.(2).
The assertion follows now by applying (3 fz,gz,)*l to the above equation. ]

Lemma 54 Suppose given fo, f1, fo € dgCoalg(T' A, TB). Then the following holds.
(fo— )PP + (fr = )08 = fo — fo
Proof. After application of 3y, y, we have to show that

(fO - fl)Bfo,ﬁ + (fl - f2)6fl,f2 = (fO - f2)6f07f27

cf. Definition 52. But we have

(fo = fum + (fi = fo)m = (fo — f2)71,
hence the assertion follows. O

Remark 55 Suppose given morphisms of differential graded coalgebras f, g € dgCoalg(T' A, T B)
and an (f, g)-coderivation h: TA — T'B of degree p.

Recall that tlzgf’g) = 71: Coder(TA, TB)P/:9) — PreCoder(T A, TB)P(/:9) = grHom(T A, T B)?

is the inclusion, i.e. we have htzf:gf’g) = h, cf. Remark 45.(1).

By Theorem 49 we have M 1t 1 = t;,1my,;. With Lemma 42 it follows that
hMi,l(f,g) _ hm’l’:gf’g) = hyP

with the differential p from Lemma 40.

Lemma 56 Suppose given fi, f2, g1, go € dgCoalg(T A, T'B).
For an (f1, g1)-coderivation h: TA — TB of degree p the following hold.
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(1) hq)ﬁ’ngp ,(f1,92) th,71(f17gl)(I>£:z? _ —(h ® (g1 — 92))M£71(f1792)
th:l(ngl)(I,;?:gi _ ((f2 ) ® h>M571(f2791)

(2) h@ﬁ ziMp (f2,91)
Proof. Recall the Zr 4 rp-graded coalgebra morphism
—— T PreCoder(T'A,TB)

t: T Coder(TA,TB)
= 7%, with the 75 from Definition 43 for k > 1, p € Z and f, g € dgCoalg(T'A, TB)

M 7(f7 )
with tz’l 9) =
cf. Definition 47.

By Theorem 49 the following formula holds
tomy g — ([d® Mg+ Mg ®id)ta

Mot =
Given g, 1, 2 € dgCoalg(T'A, TB) and an (pq, ¢1)-coderivation 7, : TA — T'B of degree p;

and an (p1, p2)-coderivation ng: TA — T B of degree po this implies with Remark 55 that as
T9. (*)

(m & m)T2pP P2 — (1 @ mopP? + (—1)P2mu Pt @ o)

graded linear maps we have
=0.

(m & nQ)M§11+p2,(<P0,<P2)

©1 (¢1 — po)m
Suppose given an (f1, g1)-coderivation h: TA — T'B of degree p

CPO)MO =m(p1 — o) —

Moreover, note that (

For (1), we calculate using Lemma 53
f g p’(flng) p’(f17gl) f 9!
hq)fi g?M — hdMy (I)fi g?
L 53 (h (h ® (g1 — )) )Mp ,(f1,92) thjl(fl,gl) + (hMﬁl(flygl) ® (g1 92))
92))7'2)Mp — hpP + (hp? @ (g1 — g2)) 72

(
h® (g1 —
92))721” + (R @ (g1 — g2)p° + bt @ (g1 — g2)) 72

— (h —(
(h® (g1
D (he (g1 — go) Mg
For (2), we also calculate using Lemma 53
th(fl 791)(1)1?,;1
((fz — f) @ hym) MY — WMD) — ((f2 = fr) @ W)

f2,91 7 70,(f2,91)
g My

L:53(
h)TQ

s — f1)® )Tz)u — i — ((fa — f1) @ hpP) 12
((f2 = f1) @ b? + (=1)P(fa — fr)u’

fa — f1 ® h)Top —
) p,(f2,91)

fo— f1) ® h) M3

*

= (n+
—
(

—
N>

2.2.2

Coderivation homotopy
We are now in a position to define coderivation homotopy on differential graded tensor
coalgebras and prove that it is an equivalence relation
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Definition 57 Let f: TA — TB and g: TA — T B be morphisms of differential graded
coalgebras.

A coderivation homotopy from f to g is an (f, g)-coderivation h: TA — T'B of degree —1 such
that f — g = hm + mh, cf. Definition 34.

We call the morphisms f and g coderivation homotopic if there exists a coderivation homotopy
from f to g.

We sometimes just write homotopy for coderivation homotopy.

Lemma 58 Let A", A, B, B’ be graded modules. Suppose we are given differential graded
tensor coalgebras (TA', A,m), (TA,A,m), (TB,A,m) and (TB’,A,m), i.e. objects in dtCoalg,
cf. Definition 29.

Suppose given morphisms of differential graded coalgebras f: TA — TB and g: TA — TB,
s:TA" - TA andt: TB — TB'. Suppose that h: TA — TB is a coderivation homotopy from

f tog.
Then sht: TA" — TB’ is a coderivation homotopy from sft to sgt.

Proof. By Lemma 36 the graded linear map sht: TA" — T B’ is an (sft, sgt)-coderivation of
degree —1. Moreover, we have

sft —sgt = s(f — g)t = s(hm + mh)t = shmt + smht = shtm + msht,
since s and t are morphisms of differential graded coalgebras and thus commute with the

differentials. It follows that sht is a coderivation homotopy from sft to sgt. O

Remark 59 Let f, g € dgCoalg(T'A, T B) be morphisms of differential graded coalgebras.
By Remark 35 we know that f — g is an (f, g)-coderivation of degree 0. Using Remark 55 and

Lemma 40 we have for an (f, g)-coderivation h: TA — T'B of degree p that
th’,l(f,g) _ hmﬂf’g) = hyP = hm — (—=1)Pmh.

So h is a coderivation homotopy from f to g if and only if h is an (f, g)-coderivation of
degree —1 and satisfies
717 )
hM1,1 ) = f—g

Recall the Z-graded module Coder(T A, TB)/9) of (f, g)-coderivations that has at p € Z the

module Coder(T'A, TB)?/:9) of (f,g)-coderivations of degree p. Then Coder(T'A,TB)\/9)

becomes a differential Z-graded module (i.e. a complex) with the differential Ml(fl’g) which is

at p € Z given by (Ml(,ffg))p — Mf”l(f’g).

Lemma 60 Let f,g € dgCoalg(T'A, TB) be morphisms of differential graded coalgebras.

Suppose there exists a coderivation homotopy h': TA — TB from f to g. Consider the
following Z-graded linear maps of degree 0.

Uyp: Coder(TA,TB)9f) —— Coder(TA,TB)\99)
\Pz’[: h —— —h(@)g:?)p + (h ® h/)Mgzl’(g’g)

AR Coder(TA,TB)99 — Coder(TA,TB)\9)
_17 s
W ho—s R(@L9 + (1) @ hyMp; o)
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Then Wy and Uy are isomorphisms of differential Z-graded modules.

(COder(TA, TB) (979)’ Ml(-’glvg))
\Ilh’[ \I/h,L

~ ~

(Coder(TA, TB)@:, M%) (Coder(TA, TB)9), M)

Proof. Since M is a differential on T'Coder(T'A,TB) by Theorem 49, the tuple (M} 1)r>1
satisfies the Stasheff equations by Lemma 24.(1). In particular, we have

M171M171 =0 and 0= M271M1y1 + (id@ Ml,l + M171 ® id)MQ,l' (*)

We first show that Wy, and Wy, are morphisms of differential Z-graded modules, i.e. we show
that \I/h/(Ml(;ql’g) = M(g f)\I/h/ and W,/ M (f’ ) — Ml(?fg)\ph’y

For Wy, let h: TA — TBbea (g, f)- Coderlvation of degree p. We obtain using (x), Remark 59
and Lemma 56.(1)

h‘IﬂZ, Mfl(g 9) _ —th>9 gMp (9:9) 4y,
—hMp (9.1) q)g?+

(h®hM )
hMp (9:/) q)gg+ th,g,f ®h)Mp,(gg)

+(he(f - g))Mé’:fg’g) (h& (f — g) MEL?
= hap Dt

(h&h )Mp 1(99)Mp7(99)
(h e (f — ) ME?
p,(9,9) p,(9,f) N A rPs(9,9)
190y pr2o + (RMD™ @ B') My
(

For Wy, let h: TA — TB be a (g, g)-coderivation of degree p. We obtain using (), Remark 59
and Lemma 56.(2)

hi[,i/[M{vl(f’g) — h@ﬁ;gMi:l(fvg) + (_1)p(h/ ® h)MgIl’(fug)Mizl(fvg)
= hMP ") 0L8 + ((f — g) @ h)ME (T
_ (_1)p(h/ ® hMﬁ,(g,g))Mp,(f,g) — (—1)P(— 1)p( —17(f,9) ® h)Mf,’l(f’g)

_ hMp,(M)q)f,g + (=D @ th(g g))Mﬁ(f 9)

+((f —9) @ )MED — ((f — g) © h) ME)
, 1
= WM uht

It remains to show that W/ and ¥,/ are isomorphisms of Z-graded modules. For p € Z,

recall the isomorphisms /3 .00 pE , and Bp from Lemma 37, which are all given by h — hmy.
Define linear maps d}h, and wh, such that the following diagram commutes.

wr, P,
Coder(T A, TB)»@-f) — "L Coder(T A, TB)P99) — L Coder(T A, TB)P/-9)

4 ¥ D
ZJ g,f ZJB%Q ZJ f.9
P wP

I h'|

grHom(T' A, B)Y ———  grHom(T'A, B)P ——  grHom(T'A, B)?
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It suffices to show that wz,[ and wi’t are isomorphisms.

For ¢p/p let n: TA — B be a graded linear map of degree p and let h: TA — T'B be the
unique (g, f)-coderivation of degree p such that hﬁg’ F=1 For k > 1 we have using Lemma 51

(g e = ()
Lk<h5§f¢p/ )
= Lk(hqu’ 9,9 )
= u((~h®7% + (h@ )M 09 e )
=~ (hBY ;) + (R ® B)Mby 99 g
= —Lk77—|—bk< h®h Mp 1(99)) T
=Nk + Z ((g)ro,r(’) @ MNsy @ (fA)rl,'r’l ® (h,)SQ,l ® (g)m,ré)mr(’)—l—l—o—ri—l—l—l—ré,l'
ro+s1+ri+sa+re=k

1ol
T0,71,72,7,T1 520
s1,822>1

gg)

Injectivity of 1y, Suppose that nyy,, =0, i.e. (Uwi/{)k =0 for k > 1. We show that n, =0
for k > 1 by induction on k. For k = 1 note that by the above formula (U@bﬁq)l = —n, i.e.
m = 0. Now let £k > 1 and suppose that ny = 0 for £ < k. But then the above formula for
(mbixr)k implies that (sz'r)k = —1), since in the sum only terms 7, with s; < k appear.
Thus 7 = 0. Hence ker(¢},,) = {0} and we conclude that vj,, is injective.

Surjectivity of wz,r. Suppose given a graded linear map 6: T A — B of degree p. We construct

the components 7;: A®® — B of a graded linear map 7: TA — B of degree p by the following
recursive formula for £ > 1.

Nk = =0k + Z (( )7"0,7"0 X MNs; & (f)rl T (h/)52,1 X (g)rg,ré)mr(’)-l—l—&—ri—i-l—i-ré,l

ro+s1+ri+sa+ro==k
70,71,72,7H,1] 15 >0
81,8221

Note that in the above sum only terms 7y, with s; < k appear. But then we have for £ > 1

(nng/[)k =N+ Z ((g)ro,r6 X Ns; @ (f)rl,r’ b2y ( )8271 ® (g)rz,ré)mr6+l+r’1+1+ré,1
ro+s1+ri+sa+re=k
T0,71,72,7(,T] 75 >0
51,521

= Oy

Hence we have constructed a graded linear map n: TA — B of degree p with 77¢£/[ = 0.
Therefore wz,[ is surjective.

For ﬁw let n: TA — B be a graded linear map of degree p and let h: TA — T B be the
unique (g, g)-coderivation of degree p such that hph , =mn. For k > 1 we have using Lemma 51

(mﬁpq)k
= u ()
= (h gwp,
= Lk(h‘ljZ’ /Bf, )
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= e ((h®L9 + (—1)P(h' @ ) MYV gt )
= tk(hBD ) + (—1)Pue (W @ h)ME W97 )
= un+ (—1 )pbk((h’®h)Mp_( D)y

=Nk + (_1) Z ((f)rg,r’o @ (h’/)shl ® (g)rl,r’l & T)so X (g)rg,rg)mr’+1+r +14715,1"

ro+sitrit+se+ro=k
/
T0,71,T2,74,T7 75 >0
s1,522>1

Injectivity of 1/15/[. Suppose that 771/1’)/[ =0, i.e. (mbp,L)k =0 for k > 1. We show that n, =0
for £ > 1 by induction on k. For k = 1 note that by the above formula (mpz,L)l =, i.e.
m = 0. Now let k > 1 and suppose that 1y = 0 for £ < k. But then the above formula for

(U¢Z'L)k implies that (mﬁp,l)k = 7, since in the sum only terms 7, with so < k appear. Thus
k. = 0. Hence ker(¢}, ) = {0} and we conclude that 7, is injective.

Surjectivity of ¢Z’L‘ Suppose given a graded linear map 6: TA — B of degree p. We construct

the components 7, : A®%* — B of a graded linear map 1: TA — B of degree p by the following
recursive formula for k > 1.

Nk = O — (*1)1) Z ((f)ro,r(’) ® (h/)sl,l ® ( )rl 1 ® Nsy @ (g)rg,ré)mr(’)-i-l-i—ri—i-l—i-ré,l
ro+s1+ri+sa+ra=k
T0,7'1,12,70,1] 5 >0
81,52>1

Note that in the above sum only terms 7, with sy < k appear. But then we have for £ > 1

(mﬁ/ L)k

=+ (_1);0 Z ((f)ro,'r(’) @ (h/)s1,1 ® (g)rl,r’l & Tlso ® (g)rz,rg)mr6+1+r’1+1+ré,1
ro+s1+ri1+sa+ro==k
T0,71,72,7(,T] 75 >0
51,521

= 0.

Hence we have constructed a graded linear map n: TA — B of degree p with mbfb,[ = 0.
Therefore ! /| Is surjective. O

Lemma 61 Being coderivation homotopic is an equivalence relation on the set dgCoalg(T A, T B)
of morphisms of differential graded coalgebras from T A to T B.

Proof. We have to show reflexivity, transitivity and symmetry.

We make use of Remark 59 without further comment, i.e. we use that an (f, g)-coderivation
h: TA — TB of degree —1 is a homotopy if and only if hM =f-g.

Reflexivity: The graded linear zero map h = 0 of degree —1 is an (f, g)-coderivation and
satisfies hMill’(f’f) = 0= f — f, hence is a homotopy from f to f.

Transitivity: Suppose given fo, f1, fo € dgCoalg(T'A,TB). Suppose there is a homotopy
hi: TA — TB from fy to fi and a homotopy hs: TA — TB from f; to fs. Define the
(fo, f2)-coderivation h: TA — T'B of degree —1 by

hi= @R 4 ha® 8 — (hy @ ha) My 7T,

68



Since M is a differential on T'Coder(T'A, T'B) by Theorem 49, the tuple (M, 1),>1 satisfies
the Stasheff equations by Lemma 24.(1). In particular, we have

MiaMyp =0 and 0=DMy M1+ (id@ M1+ M1 ®id)Ma;. (%)

To show that A is a homotopy from fy to fo, we have to show that hM;ll’(fo’fQ) = fo— fo. We
calculate using (), Lemma 54 and Lemma 56.

BMEIOT) = o =L UOS2) o LU0 B2) (1 @ oy) Vg5 2082 g 00 1)
L5y M ORI E (o (fy — fo) M5O
MBI 4 (fy— f1) ® ho) Mz O
—(hm® h2)Mgf,(foyfz)MilL(fo,fz)
D b IR (1 )My
+ ho My ISR 4 (fy — f1) @ ho) My VO
+ (hn ® hy My 2U0D) N b0 te) (g g B0 g oy gy L oste)
= (fo— L)@ — (@ (f - f2))M2*711,(fo,f2)
+(fi = P)OR L+ ((fo— 1) ® ha) My 0
+ (i ® (fi = f2)) My V0P ((fo = f1) @ ho) My U072
= (fo— P)OPL + (fi = fo)@Rf2
L:54 fo . f2
Hence h is a homotopy from fy to fo.

Symmetry: Suppose given morphisms of differential graded coalgebras f, g € dgCoalg(T' A, T B)
and a homotopy h': TA — T'B from f to g. In this case, we have the following isomorphism
of differential Z-graded modules from Lemma 60.

Ui Coder(TA,TB)9) —— Coder(TA, TB)99)
W ho— —h(25)" + (h© WM
Using Lemma 54 and Lemma 56 we have
(9— DUy = —(g— NI+ ((g— )@ h)My o

L3 (g [)O09 + WG 109 g M9 o9
= o= N85 (7 )0y Hag
L2 (g - g)+ WeGIM Y
= g

Since Wy is an isomorphism, there is a unique (g, f)-coderivation h: TA — T B of degree —1
such that AWy = R/ (I)]gf’; But then we obtain with the calculation from above

Mwlill,(g,f)\l,h/r _ h\I’h’[Mlle(g’g) _ h/q)%M;lL(g,g) = (g— ).

Hence hM;f’(g’f) =g — f,i.e. h is a homotopy from g to f. O
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2.2.3 The homotopy categories of differential graded tensor coalgebras and
of A_-algebras

Recall that by Definition 28 the category A.-alg of A.-algebras is equivalent to the full
subcategory dtCoalg of dgCoalg consisting of the differential graded tensor coalgebras, cf.
Definition 29. The equivalence is established by the full and faithful Bar-functor from
Definition 28.

Bar: A-alg —— dgCoalg

Using this equivalence, we define A.,-homotopy using the notion of coderivation homotopy
from Definition 57.

Definition 62 Let A = (A, (mg)r>1) and B = (B, (mg)x>1) be Ax-algebras.

Two morphisms of A, -algebras f: A — B and g: A — B are homotopic if the morphisms of
differential graded coalgebras Bar f: TAMN — TBI and Bar g: TAMN — TBM are coderivation
homotopic, cf. Definition 57.

Theorem 63

(1) Being coderivation homotopic is a congruence on the category dtCoalg of differential
graded tensor coalgebras.

We obtain the homotopy category dtCoalg whose objects are differential graded tensor coalgebras
and whose morphisms are equivalence classes of differential graded coalgebra morphisms under
coderivation homotopy.

For a morphism f: TA — TB in dtCoalg we write [f]| for its equivalence class under this
congruence. We call [f] the coderivation homotopy class of f.
(2) Being homotopic is a congruence on the category Ax-alg of Aso-algebras.

We obtain the homotopy category A -alg whose objects are A -algebras and whose morphisms
are equivalence classes of morphisms of As-algebras under homotopy.

For a morphism f: A — B in Ay-alg we write [f] for its homotopy class.
(3) The Bar-functor induces an equivalence
Bar: Awalg — dCoalg
[f] —— Bar[f] := [Bar f].

In particular, the following diagram commutes where the vertical functors are the residue
class functors that send a morphism to its homotopy class or coderivation homotopy class
respectively.

Ao-alg —B%  dtCoalg

|

Bar
Ao-alg %a> dtCoalg

Proof. (1) By Lemma 61 being coderivation homotopic is an equivalence relation and with
Lemma 58 we conclude that it is a congruence.
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(2) Suppose given two A-algebras A = (A, (mg)g>1) and B = (B, (mg)r>1). By (1),
coderivation homotopy is an equivalence relation on the set dgCoalg(Bar A, Bar B) of mor-
phisms of differential graded coalgebras from Bar A to Bar B. Since Bar is full and faithful,
this implies that homotopy of morphisms of A..-algebras is an equivalence relation on the set
A o-alg(A, B) of A-algebra morphisms from A to B.

It remains to verify that homotopy is preserved under post- and precomposition. For this,
let A" = (A, (mp)p>1), A = (A, (Mp)e>1), B = (B, (mp)r>1) and B" = (B',(mp)k>1) be
A-algebras and let s: A’ -+ A, f: A— B, g: A— B and t: B — B’ be morphisms of A-
algebras such that f and g are homotopic. We have to show that sft and sgt are homotopic,
i.e. we have to show that Bar(sft) and Bar(sgt) are coderivation homotopic. Since Bar is a
functor we have Bar(sft) = (Bars)(Bar f)(Bart) and Bar(sgt) = (Bar s)(Bar g)(Bart). By
assumption Bar f and Bar g are coderivation homotopic, hence the assertion follows from (1).

(3) Let f,g: A — B be a morphisms of A-algebras. By definition of the homotopy
relation on Ao-alg, the morphisms f and g are homotopic if and only if Bar f and Bar g are
coderivation homotopic. Moreover, as Bar is an equivalence between A .-alg and dtCoalg, it
is full and faithful. It follows that Bar defines a full and faithful functor. Note that Bar and
Bar are the identity on objects. Thus Bar is an equivalence. O
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Chapter 3

Homotopy equivalences

Let R be a commutative ring.

All modules are left R-modules, all linear maps between modules are R-linear maps, all tensor
products of modules are tensor products over R.

Fix a grading category Z. Unless stated otherwise, by graded we mean Z-graded.

Our aim in this chapter is a characterisation of A,.-homotopy equivalences, cf. Theorem 79.
In the case where the ground ring R is a field, we recover Prouté’s theorem which states that
A -quasiisomorphisms coincide with A,,-homotopy equivalences, cf. Remark 80.

3.1 Homotopy equivalences of differential graded modules

3.1.1 The homotopy category of differential graded modules

Recall the abelian category dgMod of differential graded modules, cf. Definition 9.
Definition 64 Let M = (M,dy;) and N = (N,dy) be differential graded modules.

(1) Let f: M — N and g: M — N be morphisms of differential graded modules.

A morphism f is called null-homotopic if there is a graded linear map h: M — N of degree —1
such that f = hdy + dprh. We call h a homotopy. We call the morphisms f and g homotopic
if f — g is null-homotopic.

Note that the set of null-homotopic maps is stable under sums, post- and precomposition, i.e.
it forms an ideal N C dgMod.

(2) We denote by dgMod = dgMod/N the homotopy category of differential graded modules.
It has the same objects as dgMod, but morphisms are residue classes of morphisms of differential
graded modules modulo null-homotopic maps, i.e.

dgMod(M, N) = dgMod(M, N)/{f € dgMod(M, N) : f is null-homotopic}.
We denote by [f] the set of morphisms of differential graded modules that are homotopic to f,
i.e. the residue class of f in dgMod(M, N).

There is an additive residue class functor dgMod — dgMod, that is the identity on objects and
sends a morphism f to its residue class [f].
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(3) A morphism of differential graded modules f: M — N is called a homotopy equivalence,
if [f] is an isomorphism in dgMod.

Note that f is a homotopy equivalence if and only if there is a morphism of differential graded
modules g: N — M such that fg is homotopic to idy; and gf is homotopic to idy.

(4) A differential graded module M = (M, dyy) is called split acyclic, if the identity on M
is homotopic to zero, i.e. if there is a graded linear map h: M — M of degree —1 such that
idps = hdps + dprh. In this case, we say that h is a contracting homotopy on M.

3.1.2 Cones and factorisation of homotopy equivalences

Let (M,dyr) and (N, dy) be differential graded modules.

Definition 65 Suppose given a morphism of differential graded modules f: M — N. Consider
the graded module Cone(f) := M 1 ¢ N with the graded linear map dcone(f) of degree 1 given
by

g
dcone(f) 7= ( BZM £N> MU N - MU N.

This is indeed a differential on Cone(f), since we have using that fdy = dpsf for z € Mor(2)

] s (- dj[ﬁ £ [~ d?u[z] 7712 _ df\[j]df\[f] —d’;[j] fz[2}+fz[1]d7\;1] 0
Cone(f)“Cone(f) 0 d?\/ 0 d?\gl] 0 dfvdj\gl}

We obtain the differential graded module Cone(f) = (Cone(f), dcone(s)), the cone over f.
We also write Cone(M) := Cone(idyys).

Lemma 66 The cone Cone(M) is split acyclic. Moreover, we have a morphism of differential
graded modules i: M — Cone(M) given by

i= (0 idM) - M — MY g .

Proof. To show that Cone(M) is split acyclic, let h: Cone(M) — Cone(M) be the graded
linear map of degree —1 given by

h = (.O 0) MY e M — MU g
idy O

We claim that h defines a contracting homotopy on Cone(M). Indeed, we have for z € Mor(2)

1 .12 21 52(1] 0 0
2 2l-1] 2 (00 iy idy dy 1y
h dCone(M) + dcone(M)h (1(17\4 0 0 d;/[[_l} * 0 d7\4 ld;lz\[j] 0
(o 0, a0
—d3, idjy, di; 0

_ (i o
0 idj

= idzCone(M) :
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Thus idys = hdcone(ar) + dcone(ar)hs so Cone(M) is split acyclic.
Finally, to see that i is a morphism of differential graded modules, we have to verify that
dni = idgone(ar)- But for 2 € Mor(Z) we have

Edgonen = (0 idiy) <_‘gﬂ[41 | i?;g) = (0 @) =di (0 i) =di*. O

Lemma 67 Let f: M — N be a homotopy equivalence of differential graded modules. Let
i: M — Cone(M) be the morphism of differential graded modules from Lemma 66.

Factorise f as in the following commutative diagram in dgMod.

M ! N
Cone(M) & N (‘dN) !

Then both s and t are homotopy equivalences, s is a coretraction and t a retraction.

Proof. As t is the projection to a direct summand in dgMod, it is a retraction. Since Cone(M)
is split acyclic, it is isomorphic to zero in the homotopy category. By additivity of the residue
class functor dgMod — dgMod it follows that [¢] is an isomorphism, i.e. f is a homotopy
equivalence.

Since [f] = [st] = [s][t] and [t] is an isomorphism, it follows that [s] is an isomorphism,
i.e. s is a homotopy equivalence. It remains to show that s is a coretraction. Since f is a
homotopy equivalence, there is a morphism of differential graded modules g: M — N and
a homotopy h: M — M such that fg —idys = hdyr + dash. We define a graded linear map
r: MW @& M@ N — N of degree 0 by

—pll
ri=|—hdy —dyh | : MU e Me N — M.
g

We claim that 7 is a morphism of differential graded modules from Cone(M) & N — M. We
have for z € Mor(2)

_d?\/[ll} ld?\[j] 0 _hz[2}
foncanen™ = 0@z, 0 || —nelaz, — @zlpe
0 0 dy gl
—h2llaz,
= | —d3,nMd3,
d?vgz[l}
—p#]
= | —nzai M —az,pe0 | &y
gZ
= r*djy;.
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Hence r is a morphism of differential graded modules. Moreover, we have for z € Mor(2)

—pA
sr = (0 iy f2) | —hedil Y — g nel) | = —prdig Y - a4 gt =ids
gZ
Hence sr = idyy, i.e. s is a coretraction in dgMod. O

3.2 A -homotopy equivalences

Recall the full subcategory dtCoalg of dgCoalg of differential graded tensor coalgebras, cf.
Definition 29. On dtCoalg, we have the notion of coderivation homotopy, cf. Definition 57.
Coderivation homotopy is a congruence and we have homotopy category dtCoalg, cf. Theo-
rem 63.

A morphism f: TA — TB in dtCoalg is a homotopy equivalence in dtCoalg if its coderivation
homotopy class [f]: TA — TB is an isomorphism in dtCoalg. Our goal is to characterise
homotopy equivalences in dtCoalg.

For this, certain morphisms in dtCoalg will be called acyclic cofibrations and acyclic fibrations,
cf. Definition 69 below. However, we will not make use of the formal framework of a model
category.

In [Lef03], a model structure is constructed on a certain full subcategory of dgCoalg when the
ground ring R is a field. Restricted to dtCoalg, the acyclic cofibrations and acyclic fibrations
coincide with our definition below.

Some of the lemmas below are taken from [Lef03]. We reprove them here, to show that they
still hold over a commutative ground ring.

3.2.1 Acyclic fibrations and cofibrations

Let TA= (TA,A,m), TB = (T'B,A,m) and TC = (T'C, A, m) be differential graded tensor
coalgebras.

Lemma 68 There is a functor
V. dtCoalg — dgMod
(TA,A,m) ——— (A,my,)
(ft TA—-TB) —— (fi1: A— B).
Note that A =ker(A) by Lemma 19, i.e. we can recover A from T A.

The functor V' induces a functor V': dtCoalg — dgMod between the homotopy categories, given
by VIf] = [V f] for a differential graded coalgebra morphism f: TA — TB.

In other words, the following diagram of functors commutes, where the vertical functors are

the residue class functors.

dtCoalg v dgMod

| ]

dtCoalg v, dgMod
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Proof. Let (T'A, A, m) be an object in dtCoalg. Then m is a coderivation, so by Lemma 23.(2)
we have Am C A. Since mm = 0, we obtain (mm); 1 = mj1mi1 = 0. Hence (A,mq,) is a
differential graded module.

We have (id74)1,1 = ida, hence V (idra) = idy(r A)- Suppose given composable morphisms
f:TA—TB and g: TB — TC in dtCoalg. We have Af C B by Lemma 23.(1), hence we
obtain (fg)1,1 = f1,191,1, i.e. V(fg) = (Vf)(Vg). It follows that V is a functor.

To show the existence of V, it suffices to show that V' sends coderivation homotopic morphisms
in dtCoalg to homotopic morphisms in dgMod. Suppose given morphisms f: TA — TB
and g: TA — T B with a coderivation homotopy h: TA — T B between them, i.e. h is an
(f, g)-coderivation of degree —1 that satisfies f — g = mh + hm, cf. Definition 57.

By Lemma 37 we have hy, = 0 for £ > 1, so Ah C B. Hence f — g = mh + hm implies that
fii1—g11 = mi1hi1 + hiimy . It follows that h11: A — B is a homotopy of differential
graded modules between fi1; =V f and g11 = Vyg. g

Definition 69 Let f: TA — T'B be a morphism of differential graded coalgebras.

(1) The morphism f is called an acyclic cofibration if V f is a coretraction and a homotopy
equivalence of differential graded modules.

(2) The morphism f is called an acyclic fibration if V f is a retraction and a homotopy
equivalence of differential graded modules.

(3) The morphism f is called strict if f ;1 = 0 for k > 2.

Remark 70 Let f: TA — TB and g: TB — TC be morphisms of differential graded
coalgebras.

(1) The morphism f is an isomorphism if and only if it is both an acyclic cofibration and
an acyclic fibration.

(2) If f and g are acyclic cofibrations, then so is fg.

(3) If f and g are acyclic fibrations, then so is fg.

Proof. (1) If f is an isomorphism of differential graded coalgebras, then V f is an isomorphism
of differential graded modules, hence a retraction, a coretraction and a homotopy equivalence.
It follows that f is both an acyclic cofibration and an acyclic fibration.

Conversely, let f be a morphism of differential graded coalgebras that is both an acyclic
cofibration and an acyclic fibration. Then V f = f; 1 is a retraction and a coretraction of
differential graded modules, hence an isomorphism. Now Lemma 26 implies that f is an
isomorphism of graded coalgebras. Using Remark 17 we conclude that f is also an isomorphism
of differential graded coalgebras.

(2) Since the composite of two coretractions is again a coretraction, V(fg) = (Vf)(Vg) is a
coretraction of differential graded modules. Moreover, composites of homotopy equivalences
are again homotopy equivalences. Hence V' (fg) is a coretraction and a homotopy equivalence,
i.e. V(fg) is an acyclic cofibration.

(3) Since the composite of two retractions is again a retraction, the same argument as in (2)
shows that V(fg) is an acyclic fibration. O
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Lemma 71 (cf. [Lef03, Lemme 1.3.3.3])

(1) Let f: TA— TB be a morphism of differential graded coalgebras. Suppose that V' f = f11
is a coretraction of graded modules, i.e. in grMod.
Then there is a differential m: TB — T' B such that (TB,A,m) is a differential graded tensor

coalgebra and an isomorphism of differential graded coalgebras s: (TB,A,m) — (T B, A,m)
such that the composite fs: TA — TB is strict.

(TA,A,m) —L— (TB,A,m)

fs
. s
strict

(TB, A, m)

(2) Let f: TA — TB be a morphism of differential graded coalgebras. Suppose that V f = fi 1
s a retraction of graded modules, i.e. in grMod.

Then there is a differential m: TA — T A such that (TA,A,m) is a differential graded tensor
coalgebra and an isomorphism of differential graded coalgebras s: (T A, A,;m) — (T'A, A,m)
such that the composite sf: TA — T B is strict.

(TA,A,m) —L— (TB,A,m)

sf
S| .
strict

(TA,A, )

Proof. (1) By assumption, we may choose a graded linear map g: B — A of degree 0 such
that f171g = idA.

We construct the components sy, 1 : B®F — B of a graded coalgebra morphism s: TB — T'B
for k > 1 recursively. For k =1 we set s; 1 = idp. For k > 2 we set

k—1
Sk,1 = — Z g®kfk,i3i,1-
i=1

By Lemma 22.(1) this defines a graded coalgebra morphism s: 7B — T'B. Using Lemma 26
we conclude that s is an isomorphism of graded coalgebras, since s1,1 is an isomorphism of
graded modules.

We define the differential /. on TB by m := s !ms. Then m is an (id, id)-coderivation
of degree 1 by Lemma 36, i.e. it satisfies mA = A(id®m + m ® id). Moreover, we have

Ymss™ims = s7lmms = 0. Hence (TB,A,m) is a differential graded coalgebra.

1

mm = s~

Also note that s = ss~ ms = ms, thus s is an isomorphism of differential graded coalgebras.

It remains to show that the composite fs is strict, i.e. we have to show that (fs);; = 0 for
k > 2. Note that by Lemma 22.(1) we have fj = f@f We obtain

k k-1
L 23
(FS)eq =" frisin = fegset + D frisit
i=1 i=1

k-1 k-1 k-1 k-1
=) ff?fgg)kfk,isi,l Y frisin ==Y frisia + Y frasia = 0.
i=1 i=1 i=1 i=1
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(2) By assumption, we may choose a graded linear map g: B — A of degree 0 such that
gf11 =1dp.
We construct the components sy 1 : A®% 5 A of a graded coalgebra morphism s: TA — TA
for k > 1 recursively. For k =1 we set 511 = id4. For k > 2 we set

k
Sk = — (8j1,1® ... ®8j;1)fing-
> >

=2 ji+..ji=k
Jiyengizl
By Lemma 22.(1) this defines a graded coalgebra morphism s: TA — T'A. In particular, we
have for k > 2

k
Sk1=— Y Skifi1g-
1=2

Using Lemma 26 we conclude that s is an isomorphism of graded coalgebras, as s1 1 is an
isomorphism of graded modules.

We define the differential 7 on TA by m := s 'ms. Then m is an (id,id)-coderivation
of degree 1 by Lemma 36, i.e. it satisfies mA = A(id®m + m ® id). Moreover, we have
mss™tms = s7imms = 0. Hence (T'A, A, ) is a differential graded coalgebra.

Ims = ms, thus s is an isomorphism of differential graded coalgebras.

mm = s
Also note that sm = ss™

It remains to show that the composite sf is strict, i.e. we have to show that (sf), 1 = 0 for
k > 2. We obtain

k k
L 23
(sfeg =Y seifin = seafri+ Y skafin

i=1 1=2
k k k k
== seifirgfii+ D swifir=—_ skifi1+ > skifi1 =0.
i—2 i—2 i=2 i—2
]

Lemma 72 Let (M,dy) and (N,dy) be differential graded modules. Let f: M — N and
g: N — M be morphisms of differential graded modules such that fg = idy and gf is
homotopic to idy.

Then there is a homotopy h: N — N from idy to gf with fh =0 and hg = 0.

Proof. By assumption, there is a homotopy A: N — N from idy to gf, i.e. h is a graded linear
map of degree —1 with idy —gf = dyh + hdy. We set h := (idy —gf)h(idy —gf). Then
h: N — N is a graded linear map of degree —1. Since g and f are morphisms of differential
graded modules with fg = id;, we have

dyh+ hdy = dy(idy —gf)h(idy —gf) + (idy —gf)h(idy —gf)dn
= (idy —gf)dnh(idy —gf) + (idy —gf)hdn (idy —gf)
= (idy —gf)(dnh + hdy)(idy —gf)
= (idy —gf)(idy —gf)(idy —gf)
=idn —3gf +39f9f —gfgfaf
=idy —gf.
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Hence h is a homotopy from idy to gf that satisfies
fh= flidy —gHh(idy —gf) = (f = f9/)hlidy —gf) = (f — )h(idy —gf) =0

and
hg = (idn —gf)h(idn —gf)g = (idn —gf)h(g — gfg) = (idy —gf)h(g—g) =0. O

Lemma 73 Let g: TA — TB be a morphism of graded coalgebras and let k > 2. Suppose
that (gm)e1 = (mg)e1 holds for ¢ < k. Then the following equation of graded linear maps
from A®% to B of degree 2 holds.

k—1 k k k—1
Z mgrmg 95,1 — Z mg k9,451 = ng,jmj,lml,l - Z mg 344,111,1
Jj=1 Jj=2 Jj=2 Jj=1

Proof. First note that mm = 0 implies that for 1 < j < k — 1 we have

0= kazmm

In particular, this gives
k—1

M kMg ;951 = Z M My j95,1-
i=j
By assumption, we know that (gm)s1 = (mg)e1 for 1 < ¢ < k—1. Since gm and mg are
(g, g)-coderivations by Lemma 36 we conclude using Lemma 38 that (¢9m), s = (mg), s for
r,s > 1with 0<r—s<k—2,ie we have

T r
E griMs s = E meyiGi.s-
=S i=Ss

In particular, we have for 2 < j < k that

k-1
Mg kJk,jM51 = Z Mk igi,;Mj1 + ng RIUIN
i=j i=j
Using these results we obtain
k—1 k
D Mk G50 = D Tk ek, M1
j=1 =2
- k k-1 kK
= Z Z MM G50+ Y Y MkiGi M1 — > Y GhilMi M
j=1 i=j Jj=2 1=j Jj=2 i=j
-1 ] k i
= Z Z ME,iMi 95,1 + Z Z Mk igi,jMj,1 Z Z ki 5151
=1 =2 j=2 =2 j=2
k-1 k i
= —Mg,1M1,191,1 + Z Mgs | — Z m; g1+ Zgi,jmj,l - ng,i Z mi,jij)
i=2 j=1 =2 i=2 =2
=—g;,1Mm1,1 —mg,1mi,1
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k-1 k
= —Mg,191,1M1,1 — Z MmgiGi1M1,1 + ng,imi,lml,l

i=2 i=2
k—1 k

= - Z Mk,igi,1M1,1 + ng,imz’,lml,l- 0
i=1 i=2

Lemma 74

(1) Let f: TA— TB be a strict acyclic cofibration of differential graded tensor coalgebras.
Then there is a differential graded coalgebra morphism g: TB — TA such that fg = idpa
and gf is coderivation homotopic to idrp, where a coderivation homotopy h: TB — T B from
idrp to gf can be chosen such that fh = 0.

(2) Let f: TA — TB be a strict acyclic fibration of differential graded tensor coalgebras.
Then there is a differential graded coalgebra morphism g: TB — T A such that gf = idrp and
fg is coderivation homotopic to idr 4, where a coderivation homotopy h: TA — T A from idra
to fg can be chosen such that hf = 0.

Proof. (1) Since f is an acyclic cofibration, there is a morphism of differential graded
modules ¢: B — A such that fi19¥ = idq and idp is homotopic to ¥ fi1. Recall that
this means that 1ym1 1 = mq,19 holds and that there is a homotopy n: B — B such that
idp =9 f1,1 = nmy1 + my;1m. Using Lemma 72 we can choose the homotopy 7 such that
Jiam = 0.

To construct a graded coalgebra morphism g: TA — T' B, we give a recursive formula for its
components g 1 : B®F 5 A. For k =1 we set 91,1 = 1. For k > 2 we set

K
gr1i=> Y. > ([d®@n® (911f1.)%) (941 © - © gi;1)mja

J=2 utv=k—1 i1+..+i;=k
u,v>0 1505221

k—1
_ Z Z (id®“ N ® (91,1f1,1)®v)mk,j9j:1
j:l ut+v=k—1

u,v>0
By Lemma 22.(1) this defines a graded coalgebra morphism g: TB — T A.

Similarly, to construct an (id, g f)-coderivation h: T B — T'B of degree —1, we give a recursive
formula for its components hy, 1 : B®F — B. For k = 1 we set hi1:=mn. For k > 2 we set

k
hep=—>, > > (1[d®*®@h11 @ (91,1/11)%") (1% @ he1 @ (gf)ep) My

7=2 utv=k—1 r+s+t==k
u,v2>0 r+l4+t'=j
rt,t' >0, s>1

k-1
= > ([d® @k @ (91,101,105 )me b

=1 utv=k—1
u,v>0

By Lemma 37 this defines an (id, g f)-coderivation h: T'B — T B of degree —1. Moreover, the
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same lemma implies that for k,7 > 1

_ s IR -
hi; = Z id*" @ hs1 @ (9f)t,es
r+s+t=k
r+1+t'=j
rt,t' >0, s>1

holds. In particular we have for k = j, using that f; , = fl®f from Lemma 22.(1)

hep =Y d®@h1®(gaf1,)% = Y id®on® (g1/1,1)%"

utv=k—1 utv=k—1
u,v>0 u,v>0

Moreover, Lemma 22.(1) implies that for k, j > 1

gkﬁ,j = Z gil,l R...Q !]ij,l-

i1+...+i]'=k
11,05 2>1

Thus the defining formulas for g; ; and hy; for £ > 2 can be simplified to

k k—1
k1 = Z hi gk jmin — Z P e, 95,1
= =1
and
k k—1
hk)l == Z hkykhk’.]mjvl - Z hk7kmk3jh]71'
= =1

We have to show that fh =0, fg =idra, gm = mg and idrp —gf = mh + hm.

We show that fh = 0. Since fh is an (f, fgf)-coderivation by Lemma 36, it suffices to show
that (fh)r,1 =0 for K > 1 by Lemma 37. Since f is strict, we have (fh)r1 = firhi1. But we
have

Sokhor = ffgff (id®* ®@h11 @ (911 f1.1)%")

ut+v=k—1
u,v>0
= Y e fane(fiigafin)®
utv=k—1 5/0_/
u,v>0 -
=0.
We conclude that
k k—1
Jrephi1 = — Z Jr i gl jmg — Z Jre gl kg jhj1 = 0.
j=2 j=1

We show that fg = idp 4. Since this is an equation of graded coalgebra morphisms, it suffices
to show that (fg)r,1 = (idra)w,1 for £ > 1 by Lemma 22.(1). Hence we have to show that

(fPr1 = {idA ith=1

0 else
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for k > 1. For k = 1 we have (fg)11 = fi1911 = fi1¢ = ida. For k > 2, note that
(f9)k1 = frkgr since f is strict. We use that fh =0, thus (fh)rr = firhir = 0, and obtain

k k-1
(FQk1 = frrgen =D frkhurgrimin — Y frrhrpmejgin = 0.
j=2 Jj=1

Claim: For k > 1 we have id%k — Ok kSl ke = Pk pmi g + my phy . For k = 1 this follows by
construction of g; 1 = ¢ and hy; = 7. Now let £ > 2. By Lemma 22.(2) we have

k

Mk = Z id®" @ m11 & id®t = Z id®(i—1) ®@mi1 ® id®(k—i)
r+t=k—1 i=1
r,t>0
and we have seen above that
k
=Y ¥ @b @ (g1f10)% =D 1 @hy @ (g f10)2 0
ut+v=k—1 j=1

u,v>0

We calculate, starting from the right-hand side and paying attention to the Koszul sign rule.

P g ke + M g g

ld®(] D@ hi1 @ (g11f1.1)2F9) (id®(i_1) ®my1 ® id®(k_i))

Il
IIMw

<
Il
-
<.
-

(1d® Y @my 1 @id®FD) (12U @ by © (g11f1.1)2% )

+
M=

<
Il
—_
Q <.
Il
,_. —

Z id®C D @my @id®V D @ by @ (g1,1f1,1)F )

1=

I
|
M»

<.
Il
-
—

id®0—Y g hiimi1 ® (91,1f1,1)®(k_j)

+
-

<
Il
-

k
Z id®0—1) @h11 @ (911102 TV @ myy @ (grafr)®* D

+
<.
aghe
T
_ .
+
=

Z id®0—Y g hi1® (91,1f1,1)®(i_j_1) ® mi1® (91,1f1,1)®(k_i)

|

s
Il

-
<

—

id®=1) ®@my1h11 ® (g1 fi)2* D

+
-

=1
ko ok
+ Z Z id®(i71) KMy & id®(j7i71) & h171 ® (9171f171)®(k*j)
i=1 j=itl
k . .
= Z id®CD @ (hy1mig +miahi1) © (grafi)2*?
i=1
k k
= Z id® @ (g1,1.f1,1)2F ) — Z id®07Y @ (gy1 f12)BEY
i=1 i=1
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k—1

k
— Z id®z ® (g171f171)®(k7z) - Z id®z ® (91,1f1,1)®(k71)
i=1 =0

=id®* —(g1,1f11)%F

_ 0k
= id™" — gk k fr k-

We show that gm = mg. This is an equation of (g, g)-coderivations by Lemma 36, so it suffices
to show that (gm)r1 = (mg)i1 for k > 1 by Lemma 37.

We use induction on k. For £ = 1 we have g1,1 = ¢ and thus

(gm)i1 =g11mi1 =vYmi1 =mi1 =mi1011 = (Mmg)11-

Now let k£ > 2 and suppose that (gm),1 = (mg)e,1 holds for 1 < ¢ <k —1.
We have to show that (gm)y1 = (mg)g,1 for k > 1, i.e. we have to show that

k k
Z Ik,jTj1 = Z Mk,j95,1
j=1 j=1

or equivalently that for k£ > 1

k—1 k
gk,1M11 — M kGk1 = Z Mk 95,1 — ng,jmj,l' (%)
j=1 J=2

Since fm = mf and using that f is strict, we have f ymy; = (fm)r; = (mf)r; = mi;fj;-
Since fg = idr4 and again using that f is strict, we have f,,g,s = 0 for r # s and
frrGrs = id®" for r = s. We thus obtain

k-1 k k-1 k
Thk (Z Mpjgi1 — Y gk,jmj,1> =" [ igi1 — Y frkGemia
=1 i=2 =1 =2
k-1 k
M f53950 = D frkgrgmia
Jj=2

J

>

mg1 — Mg,1
0

Using this result, we start with the right-hand side in (%) and the previous claim and obtain
k—1 k k—1 k
D migin — > gk = (id@k _gk,kfk,k) (Z ISTIEDY gk,jmj,1>
j=1 Jj=2 j=1 j=2
k—1 k
= (hk,kmk,k + mk,khk,k) (Z ISTIEDY Qk,jmj,1>
Jj=1 J=2
k—1 k
= Dy (Z Mgk Mk g1 — Z mk,kgk,jmﬂ)

J=1 Jj=2

k—1 k
+ my <Z hixmi jgi1 — Z hk,kgk,jmj,1>
Jj=1 Jj=2
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k—1 k
= Dy (Z Mg Mk g1 — Z mk,kgk,jmj,l> —My kGk1
= =2

=S

In order to show (*) it remains to show that S = gy 1m1,1. But since

k k-1
Geami1 = hyp <Z Gk,jTj,1M11 — Z mk,jgj,1m1,1>
Jj=2 Jj=1

it suffices to show that

k—1 k k k—1
D MRG0 D Mkl M = Y Gk T — Y T G111
=1 i=2 i=2 =1

But this equation holds by Lemma 73 using our induction hypothesis. Hence the verification
of gm = myg is completed.

We show that idrg —gf = mh+ hm. Since idrg —gf and mh+hm = hMill’(id’gf) are (id, gf)-
coderivations of degree 0 by Remark 59, it suffices to show that (idrp —gf)k1 = (mh+hm)i
for k > 1. We proceed using induction on k. The case k = 1 follows from the construction of
911 =1 and hi1 =1n. Now let k£ > 2. Since f is strict we have to show that

k k
—gk1fi1 = Z myjhia + Z hy jmi 1. (%)
=1 i=1

Since fm = mf and using that f is strict we have fi pmg; = (fm)r: = (mf)r; = muy;fii for
k,i > 1. Moreover, since fh = 0 we have f;jh;; =0 for j > ¢ > 1. Thus

k k-1 k k-1
Tk (Z hi jmj1 + Z mk,jhj,1> = Z Jreghi jmi + Z Jremi jhja
=2 =1 j=2 =1
k

k—1
= > fekhwgmin + > mu;fiihia
=2 j=1

I
e

Hence the right-hand side of (x) becomes with the previous claim

k k
> mughin+ Y himia
j=1 j=1

k k-1
= my ki1 + himig + Z by jmg1 + Z my ;i1
j=2 j=1

k k—1
= my ki1 + hpimig + (id@k —gk,kfk,k> (Z by jmjq + Z mk,jhj,1>
= j=1
k k—1
= mgrhka + hgimig + (hk,kmk,k + mk,khk,k> (Z by jmjq + Z mk,jhj,1>
Jj=2 j=1
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k k-1
= my phr1 + hramiy + heg (Z mg kg jmj1 + Z mk,kmk,jhj,1>

=2 j=1
k—1
+ Mk (Z Iy gl jm 1 + Z hy, kmk,jhj,1>
j=2 Jj=1
=—hg,1

k-1
= hgima + by (Z My e gmgs + Y mggmyjhj, 1)

Jj=2 j=1
k-1
= - Z hi jhi gmjimy g — Z Py xmu jhjima
Jj=2 j=1
k k—1
) higmughi jmiy + > higmg pmg i ()
=2 =1

We now continue with the left-hand side of (x). Plugging in the defining formula for g5 ; and
using that fm = mf we obtain

k—1
—gk1f11 = Z Pk k9k, [ M1 + Z hi emi jgi1f1,1
Jj=2 Jj=1

Moreover, since by our induction hypothesis we have (idrg —gf)e1 = (hm + mh)y; for
1 <{¢ < k-1, Corollary 38 implies that for r,s > 1 with 0 <r—s < k—1 also (idrp —¢f)r.s
(hm + mh), s holds, i.e. we have using that f is strict

— id%r +hy My + My phypy ifr=s

_gr,sfs,s = T T
E hmmi,s + E m,,,ihm else.
=8 =38

Thus we obtain

—gr1f11
k—1
== Z o kGr.j fi.5m5,1 + Z P emi 951 f1,1
Jj=2 j=1

k-1 k k
= (Z Pk (Z hiimig + Y mk,ihi,j> mj,1> + hg g (— 1dSF +hg gmy g + mk,khk,k)mk,l
= \igj i=j
k-1 j j
- (Z hy gy (Z hjim;q + Z mj,ihiJ)) — hy pmy 1 (— idp +hy1mi1 + m1,1h1,1)
=2 i=1 i=1

k ko k
=3 hghiimigmin + Y > by gy ihi jmga
J=2 i=j Jj=2 i=j
k-1 J J
- > i gemug jhjmiy — Z > i gemu jmy ihi
j=1 i=1 j=1 i=1
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Now we consider the first and last double sum. Changing the order of summation and using
that mm = 0 we obtain

kook k=1 Jj
Z th ki AT 5151 Z th ETNE, 1705 zhzl
j=2 i=j Jj=1 i=1
koo k=1 k—1
= Z Z P P i jmg 1 — Z Z Py g jmj ihi 1
=2 j72 i=1 j=i
k—1
=— th khimiamag + Y by i gmuihi 1
=2 i=1
Now we consider the second and third double sum.
ko k k=1 j
S hgmpihigmiy — > Y higmujhiimia
j=2 i=j j=1 i=1
ko k k=1 k—1
:Z thkmkz 1,5175,1 Z thkmkj 5,iT14,1
Jj=2 1=j =1 5=t
k=1 k—1 k k—1 k—1
= g ihigms + Y hi kM ehijmgn — > > higmijhimi
Jj=2 1=3 7j=2 =1 j=t
k k—1
= P ehigmis — Y by gy shiama
=2 j=1
So altogether we obtain for the left-hand side of (x)
k—1
—gk1f11 = Z hieehiimiamiy + Y him empihi
=2 =1
k k—1
+ Z P gmi g hy jmg 1 — Z Py g jhjima 1.
=2 j=1

Comparing this with the right-hand side (x*) shows that (x) holds true. This completes the
verification of idrg —gf = mh + hm.

(2) Since f is an acyclic fibration, there is a morphism of differential graded modules
Y: B — A such that ¢ f1 1 = idp and id4 is homotopic to f117. Recall that this means that
1mq,1 = mq 17 and that there is a homotopy n: A — A such that id4 —f11% = mi1n+nm 1.
Using Lemma 72 we can choose the homotopy 7 such that nf; 1 = 0.

To construct a graded coalgebra morphism g: TB — T A we give a recursive formula for its
components g 1 : B®k — A. For k = 1 we set g1,1 = 1. For k > 2 we set

Gk = kaz,ygj 1 = Z > (901 ® . ®gi)mim

J=2 d1+..+ij=k
11,...,05>1

By Lemma 22.(1) this defines a graded coalgebra morphism g: TB — T A.
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Similarly, to construct an (id, fg)-coderivation h: TA — T A of degree —1, we give a recursive
formula for its components hy, 1 : A®k — A. For k =1 we set hy1 :=1n. For k > 2 we set

k k—1
by = — Z Z (1d®" @ hs1 @ (fg)epr)mjan — Z My ;hjan
j=2 r4s+t=k 7j=1
r+l4t'=j
rt,t'>0, s>1

By Lemma 37 this defines an (id, fg)-coderivation h: TA — T A of degree —1. The same
lemma implies that for k,j > 1

hej= >, id¥@h,® (ng)t,t”

r4+s+t=k
r+1+t'=j
rt,t' >0, s>1

holds. Moreover, Lemma 22.(1) implies that for k,j > 1

9k,j = 2: Gi11 Q... D Gi;1-
i1t tij=k
U1yt 21

Thus the defining formulas for gi ;1 and hy 1 for £ > 2 can be simplified to

k—1 k
Jk1 = Z My ;95111 — ng,jmj,1h1,1
= =2
and
k k-1
hiea ==Y hegmirhia — > myjhjihi.
= j=1

We have to show that hf =0, gf = idrp, gm = mg and idra —fg = mh + hm.

We show that hf = 0. Since hf is an (f, fgf)-coderivation by Lemma 36, it suffices to show
that (hf)r1 = 0 for kK > 1 by Lemma 37. Since f is strict, we have (hf)r1 = hi1/f1,1. Now
recall that hy 1 f1,1 = nf1,1 = 0, which implies that

k k-1
hiaifin = (- Z hy jmjihi1 — Z mk,jhj,1h1,1> fi1

= j=1
k k—1
= — Z hijmjihiifin — Z myjhj1hi1fi
= =1
=0.

We show that gf = idpp. Since this is an equation of graded coalgebra morphisms, it suffices
to show that (gf)r1 = (idrp)k1 for k > 1, cf. Lemma 22.(1). Hence we have to show that

0 else
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for k > 1. For k = 1 we have (¢f)1,1 = ¢g1,1f11 =¥ fi1 =idp. For k > 2, note we have since
f is strict that (gf)r,1 = gr,1f1,1. We use that hq1fi,1 =nfi,1 =0 and obtain

k—1

k
gk1f11 = (Z myjgiahin — Y gk,jmj,1h1,1> Jia

; =2

<
—

k—1

k
mg jgi1hi1fin — Z 9k, jmj1h11f1,1
1 =2

(]

Il
=B

We show that gm = mg. Since this is an equation of (g, g)-coderivations by Lemma 36, it
suffices to show that (gm)x1 = (mg)k1 for k > 1 by Lemma 37.

We use induction on k. For £ = 1 we have g1,1 = ¢ and thus
(gm)ig = giimi1 = Ymi1 = mi 1Y =mii91,1 = (Mmg)1,1.

Now let k£ > 2 and suppose that (gm),1 = (mg)e,1 holds for 1 < ¢ <k —1.
We have to show that (gm)y1 = (mg)g,1 for k > 1, i.e. we have to show that

k k
D9k = D Migia
i=1 i=1

or equivalently that for k > 1

k-1 k
Gk AL — MGt = D M50 — 3 GhTj1- (%)
=1 j=2

Since fm = mf and since f is strict we have m;1fi1 = (mf);1 = (fm);1 = fj;m;1. Since
gf = idrp and again using that f is strict we have g, sfss = 0 for 7 # s and g5 fss = id®"
for r = s. We thus obtain

k-1 k k-1 k
(Z Mk, i951 — Z gk,jmj,1> fi1= Z My ;951 1,1 — Z Gk, imi1fi
j=1 j=2

=1 =
k—1 k

=D mujgiafin =Y gk fimi
= =2

=Mmg,1 — Mg 1
=0.

Recall that g11 =, hi1 = n and idg —f1,191,1 = m1,1h1,1 + h1,1m1,1 hold. We start with the
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right-hand side in (%) and obtain

k—1 k k—1 k
D Mk igia— Y gkmy = <Z WSTIREDY gk,jmj,1> (idA —f1,1g1,1>
j=1 Jj=2 j=1 j=2
k—1 k
= <Z Mk 95,1 — Z gk,jmj,1> (m1,1h1,1 + hl,lml,l)
j=1 Jj=2
k—1 k
= <Z Mk j95,1M1,1 — Z gk,jmj,lmm) hi1

=1 j=2
k—1 k
+ (Z my;g51h11 — Y gk,jmj,1h1,1> mi1
j=1 j=2
k—1 k
= (Z Mk j95,1M1,1 — Z gk,jmj,lmm) hi1 +gk1ma -
j=1 j=2
=:5
Hence to show (*) it remains to show that S = —my, gi1. But since
k k—1
—M kGk,1 = ka,kgk,jmj,lhl,l - Z My kM ;95,1011
Jj=2 Jj=1
k k—1
= ( M kGk,jM51 — Z mk,kmk,jgj,1> hi1
j=2 Jj=1
it suffices to show that
k—1 k k k—1
Z mg;g5,1M1,1 — ng,jmj,lml,l = ka,kgk,jmj,l - Z Mg Mk, 95,1
j=1 =2 =2 j=1

But this equation holds by Lemma 73 using our induction hypothesis. Hence the verification
of gm = mg is complete.

We show that idr4 —fg = mh + hm. Note that idr4 —fg and mh + hm = hM;ll’(id’fg) are
(id, fg)-coderivations of degree 0, cf. Remark 59. So it suffices to show that for £ > 1 we have
(idra —fg)k1 = (mh+ hm)1. We proceed using induction on k. For k = 1 note that we have
ida —f1,191,1 = m1,1h1,1 + hi,1mq,1 by construction. Now let £ > 2. Since f is strict we have

to show that
k k

—fekGr1 = Z mg jhj1 + Z hg,jmj 1. (%)
=1 j=1

Since fm = mf and using that f is strict we have m;1fi1 = (mf);1 = (fm);j1 = fjjm; for
Jj > 1. Moreover, since hf = 0 we have h;;f;; = 0 for j >4 > 1. Thus

k k—1 k k-1
(Z higmja+ ) mk,th"l) fre =2 Pegmiafua+ Y mighiafia
j=2 j=1 =2 j=1
k k—1
= hgfigmia + Y mughiafia
=2 j=1
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Hence the right-hand side of (x) becomes

k k
ka,jhj,l + Z hy jmjq
= =

k—1
= mgrhe1 + hgamag + Z by jm;j1 + Z my,jhj1
=2 7j=1
k k—1
= my phi1 + hiaimig + (Z hy jmjq + Z my ihj ) (idA —f1,1g1,1)
Jj=2 J=1
k k—1
= my khi1 + heaimaig + (Z hy jmjq + Z mk,jhj,1> <m1,1h1,1 + h1,1m1,1>
j=2 j=1

™M=

k-1
= my khi1 + heaimag + ( hijmjimi 1 + Z mk,jhj,1m1,1> hi

=2 =1
k—1
(Z hijmjihi1 + Z my jhj1ha, 1) mi1
Jj=2 J=1
=—hg1

k k-1
= my khi,1 + (Z by jmjima 1 + Z mk,jhj,lmm) hi1

s =1
k k—1
= - Z My kMg jmg1hi — Z my kg jhj1h
s =1
k k—1
+ Z Py jmgima1hi 1 + Z my jhj1mi1hy ()
. =1

We now continue with the left-hand side of (x). Plugging in the defining formula for g5 ; and
using that fm = mf we arrive at

k-1
—frgrt = — > My fiig51h11 + Z Tk miahi.
Jj=1 Jj=2

By our induction hypothesis, we have (idra —fg)e1 = (hm 4+ mh),q for 1 < <k —1. So
Corollary 38 implies that for r,s > 1 with 0 < r—s < k—1 also (idra —fg)r,s = (hm+mh),
holds, i.e. we have

. .
— 1d§ +he iy +mypphy, ifr=s
— T T
_fr,rgr,s =
Z Iy im s + Z My s else.
1=s 1=s

Thus we obtain

— frkGr,1
k-1
== mk;fijgihi1 + ka k9k,jM,1h1 1
Jj=1 j=2
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k—1 j
= ka,] (Zh]zmzl+zmjz zl>h11+mk1(_1dA+h1 1mi1 +my1h 1)h11

j=2 =1 =1

k—1
@k
(Z Py imi j + ka i ,g>mg 1thig — (— 1dS" +hg gme g + mk,khk,k)mk,lhl,l
i=j i=j
k=1 j

J
= ZZ k,]h]zmzlhll“‘zzmk]mjzhl 1hi1

j=1:=1
kE k

-1
ko k
Z Z hyim; jmj1hyg — Z Z my ihi jmj1hia

Jj=21i=j Jj=21i=j

We consider the second and third double sum first. Changing the order of summation and
using that mm = 0 we obtain

k—1 J
Z Z mg ]m] i, 1h1 1— Z Z hy, zmz,]m],lhl 1
j=1li=1 Jj=21i=3
k=1 k—1 koo
= Z Z my jm;ihi1hi1 — Z Z by im; jmj1hy 1
i=1 j—i i—2 j=2
k—1
== mpgmyhithi + Z hgimiimahy .
=1 =2

Now we consider the first and last double sum.

k=1 j kK
> myghjimiihig =Y myhigmg b
j=1:i=1 Jj=21=j
k-1 J ki
= Z my jhjimiihi — Z Z my il jmg1hi g
J=1i=1 i=2 j=2
k=1 j k—1 k
= Z ka,jhj,z‘mi,1h1,1 + Z my jhjimiihi — Z Z my il jmg1hia
=2 i=2 =1 i=2 =2
k—1 k
= myg jhjimi1hi — Z My kg jm 1011
j=1 Jj=2

So altogether we obtain for the left-hand side of (x)

k—1
—frkgra = — > My gmyih; 1h11+zhk1mz 1mi,1ha
=1 1=2
k—1
+ ka] jaimi1hy g _kakhkjmj,lhll
Jj=1 7j=2

Comparing this with the right-hand side (**) shows that (x) holds true. This completes the
verification of idr4 —gf = mh + hm. O
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Lemma 75

(1) Let f: TA — TB be an acyclic cofibration of differential graded tensor coalgebras. Then
there is a differential graded coalgebra morphism g: TB — T A such that fg =idpa and gf is
coderivation homotopic to idrp.

(2) Let f: TA— TB be an acyclic fibration of differential graded tensor coalgebras. Then
there is a differential graded coalgebra morphism g: TB — T A such that gf = idrp and fg is
coderivation homotopic to idr 4.

Proof. Recall that we write [¢] for the equivalence class of a differential graded coalgebra
morphism ¢: TA — T B under coderivation homotopy, i.e. [¢] is the image of ¢ under the
residue class functor dtCoalg — dtCoalg, cf. Theorem 63.

(1) Since f is an acyclic cofibration, V' f is a coretraction of differential graded modules, so
in particular a coretraction of graded modules. Thus there is a differential graded coalgebra
(T'B,A,m) and an isomorphism of differential graded coalgebras s: (T'B, A, m) — (T B, A,m)
such that fs is strict, cf. Lemma 71.(1). Now fs is also an acyclic cofibration, cf. Remark 70.
By Lemma 74.(1) there is a differential graded coalgebra morphism g: (I'B, A, m) — (T'A, A, m)
with fsg = idp4 and §fs coderivation homotopic to idrp, i.e. [§fs] = [idrp]. Let g := sg.
Then fg = fsg = idra and

[9f] = [5gf] = [sgfss™ "] = [s][gfs][s~"] = [s][idrp][s™"] = [ss™'] = [idrs].

Hence gf is coderivation homotopic to idrp.

(2) Since f is an acyclic fibration, V' f is a retraction of differential graded modules, so
in particular a retraction of graded modules. Thus there is a differential graded coalgebra
(TA,A,m) and an isomorphism of differential graded coalgebras s: (T'A, A,m) — (T A, A,m)
such that sf is strict, cf. Lemma 71.(2). Now sf is also an acyclic fibration, cf. Remark 70.
By Lemma 74.(2) there is a differential graded coalgebra morphism g: (T'B, A, m) — (T'A, A, m)
with gsf = idrp and sfg§ coderivation homotopic to idr4, i.e. [sfg] = [idra]. Let g := gs.
Then gf = gsf = idrp and

[fgl = [fgs) = [s 'sfgs] = [s 1[sfglls] = [s~'|lidralls]) = [s~'s] = [idpa).

Hence fg is coderivation homotopic to idr 4. ([l

3.2.2 Products
Let TA = (TA,A,m*) and TB = (T B, A, m?) be differential graded tensor coalgebras.

Lemma 76 Let C := A @ B be the direct sum as graded modules. Consider the tensor
coalgebra (TC, A) over C. Let pra: TC — TA be the strict graded coalgebra morphism such
that pa = (pra)i,1: C — A is the projection to A and let prp: TC — T'B be the strict graded
coalgebra morphism such that pg = (prg)1,1: C — B is the projection to B. Let iy: A — C
and ig: B — C be the graded linear inclusion map. Let m©: TC — T'C be the coderivation of
degree 1 with

C ._ @k A ok, B
M1 =Dy M 1A+ P My 1B,
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for k> 1, cf. Lemma 22.(2).
Then (TC, A, m®) is the product of TA and TB in dtCoalg with projections pra and prg.
In particular, the functor V. dtCoalg — dgMod from Lemma 68 preserves finite products.

Proof. We have to show that (TC, A, m®) is a differential graded tensor coalgebra, i.e. an
object in dtCoalg. For this, we have to verify that m® is a differential. By Lemma 24.(1), it
suffices to verify that (mgl) x>1 satisfies the Stasheff equations. But we have for £ > 1

Z (d®r®m ®id® ) r+1+t1

r+s+t=~k
rt>0,s>1

= > (0¥ e(pi mlia+pEmbis) @1d®)
r4s+t=~k
r,t>0,s>1

) (p®(r+1+t) ®(r+1+t)

A , B ,
A My y14110A T PR mr+1+t,1lB>

_ r ®s t A .
= E (pA & (pA ms 144 +pB myg 113)]9,4 @Dy )mr—i-l-l-t,lZA
r+s+t==k
rt>0,s>1

+ > (5 © (05 midia+ o mPiin)ps © 0 ) mbii i

r4+s+t=~k
r,t>0,s>1

= > (1d®r®m ®1d®) M ia

r+s+t=k
rt>0,s>1

+ Z p% <1d®r®m ®1d®) My’ 144108

r+s+t==k
rt>0,s>1

=0.

Hence (TC, A, m®) is a differential graded tensor coalgebra, thus an object in dtCoalg. The
projection morphisms pr4 and prp are morphisms of differential graded coalgebras, since for
k > 1 we have

(mSpra)es = mf(pra)i,r = mgipa = p5miy = (pra)eemis = (pram™)ia

and

(mCpre)ka = mf 1 (pr)11 = mf s = P5mE, = (pre)kxmie, = (prem® )i

We claim that T'C' with the two morphisms pr4 and prp is a product of TA and T'B in
dtCoalg. For this, let (T'D, A, m”) be another object in dtCoalg and let u: TD — T A and
v: TD — TB be morphisms of differential graded coalgebras. We have to show that there
is a unique morphism of differential graded coalgebras w: TD — TC with wpra = u and
wprB = V.

Uniqueness. A morphism of differential graded coalgebras w: T'D — T'C' is uniquely determined
by its components wy, 1: D — C for k > 1, cf. Lemma 22.(1). But since pr4 and prp are strict
and their (1,1)-components are the projections p4 onto A and pp onto B, we conclude from
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wpra = uthat wy 1pa = (Wpra)k,1 = uk, and from wprp = v that wy 1pp = (WPTB)K1 = Vk,1-
Since C' = A @ B, it follows that the components wy, ; are uniquely determined.

Ezistence. Define a graded coalgebra morphism w: T'D — T'C by its components
W1 = Ug,1%A + Vg 118

for k > 1, cf. Lemma 22.(1). Since pra and ppp are strict, we have for k > 1

(wpra)ky = wi1(pra)i,n = (Uk1%a + Vk19B)PA = Uk 1,

hence wpra = u. On the other hand, we have

(wprB)k1 = Wk (PrB)1,1 = (Uk1i4 + VE19B)PB = Vk 1,

hence wprp = v. It remains to show that w is a morphism of differential graded coalgebras.
For this, we have to show by Lemma 24.(2) that for k£ > 1 the following equation holds.

k
Yo (@ eml @id®wei =Y. Y. (01 ® ... ®wj,1)m.
r+s+t=k =1 j1+...+je=k
rt>0,s>1 J1yenge 21
But starting with the right-hand side we obtain using that u and v are morphisms of differential
graded coalgebras together with Lemma 24.(2)

k
> Y (Wha®..ew)mg,

=1 ji+..+je=k
Jise-nje>1

k
=Y (wp1®...® wjz,l)(P‘femfliA +p%€mfli3)
=1 ji+..+ji=k
e >1

k
S YT (wiapa) ® .. ® (wj,apa))miyia

(=1 ji+..+je=k
Jiyenje=1

k
+> > (wj1pB) ® ... ® (wj,1pB))mpyiB

/=1 ]1++]g=k
Jiseje>1

k
Z Z (ujhl ®...Q Uj£71)mé1i,4

/=1 j1++j[:k:
J1yensje>1

k
+Z Z (vjhl & ...®sz71)m£1i3

=1 ji+..+je=k
J1yeenje>1

e Z (id®r X m£1 X id®t)u7~+1+t71iA

r4+s+t=~k
rt>0,s>1

+ Y ([[d¥"@ml) ©id¥)ve1in

r4+s+t=k
rt>0,s>1
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= Z (id®" @ mgl @ 1d® ) wy 41441
r+s+t==k
rt>0,s>1
Thus w is a morphism of differential graded coalgebras with wpra = v and wprp = v.

Finally, to see that V preserves products, recall that V(T'A) = (A, mﬁl). For TC, we have
v(Tre) = (C, mlcl) with C = A ® B and graded modules and

A
. ; m 0
mfl :pAmfle +meflzB = ( 671 P > :A®B— A@ B.
1,1

Moreover, for the projection morphisms we have V(pra) = (pra)i,1 = pa and V(prg) = ps.
It follows that V(T'C) is a direct sum, i.e. a product, of V(T'A) and V(T'B) in dgMod. O

3.2.3 Factorisation
Let TA=(TA,A,m) and TB = (T'B, A, m) be differential graded tensor coalgebras.

Lemma 77 (cf. [Lef03, Lemme 1.3.3.2]) Suppose that the differential m on T'B satisfies
my,1 =0 for k> 2. Suppose that (B, m11) is split acyclic. Let p: A — B be a morphism of
differential graded modules between V(T'A) = (A, m1,1) and V(T'B) = (B, mq,).

Then there exists a morphism of differential graded coalgebras f: TA — T B with f11 = ¢.

Proof. Since (B, mq ) is split acyclic, there is a graded linear map n: B — B of degree —1
such that idg = nmai1 + min.

We define a graded coalgebra morphism f: TA — TB by its components f;; for £ > 1
recursively. For k =1, set fi 1 := . For k > 2, set

Jr1 = my10m.

This defines a graded coalgebra morphism by Lemma 22.(1). We have to show that f is a
morphism of differential graded coalgebra, i.e. we have to verify that fm = mf. For this, it
suffices to show that (fm)y1 = (mf)r,1 by Lemma 37. Since my; = 0 for k > 2 on T'B, we
have to show that

k
Sramig =Y mygefer.
=1

However, the right-hand side becomes, using mm = 0

k

k
> miefor =mpie+ Y myeme1en
=1 =

= ME1P — M, 11,197
=M1 — Mk 1PM117
= my1¢(idp —m1,1m)
= M 1PNM1,1

= frami.

Thus f is a morphism of differential graded coalgebras. O

95



Lemma 78 Let f: TA — TB be a morphism of differential graded coalgebras such that
Vf=fi1: A— B is a homotopy equivalence of differential graded modules.

Then there is a differential graded tensor coalgebra TC = (TC, A, m), an acyclic cofibration
s: TA — TC and an acyclic fibration t: TC — TB of differential graded tensor coalgebras
such that f = st holds.

TA f TB

f1,1 htpy. eq.
ac. cof. ac. fib.
TC

Proof. Let Cone(A) be the cone of the differential graded module (A, m1,1). Then Cone(A)
is a split acyclic differential graded module and we have the morphism of differential graded
modules i: A — Cone(A), cf. Lemma 66. Let (T Cone(A), A, m) be the differential graded
coalgebra in dtCoalg with my ; = 0 for £ > 2 and m;; being the differential on Cone(A), cf.
Lemma 22.(2) and Lemma 24.(1).

By Lemma 77 there is a morphism of differential graded coalgebras j: TA — T Cone(A) such
that j11 = .

Now let TC' = T Cone(A) x T'B be a product of T'Cone(A) and T'B in dtCoalg, cf. Lemma 76.
Denote by p1: TC — T Cone(A) and py: TC — TB the projection morphisms. By the
universal property of the product, there is a morphism of differential graded coalgebras
s: TA — TC with sp; = j and sps = f. Let t = py be the projection morphism. Then we
have f = st.

Since the functor V: dtCoalg — dgMod from Lemma 68 preserves finite products (cf.

Lemma 76), applying the functor to the equation f = st yields the following commuta-

tive diagram.
Vi=fia

A B
Vs=(i fi1 )\) / 0\
Cone(A) ® B <ld3) Ve

Lemma 67 implies that Vs and V't are homotopy equivalences of differential graded modules, V's
is a coretraction and V't is a retraction. That is, s is an acyclic cofibration of differential graded
tensor coalgebras and V¢ is an acyclic fibration of differential graded tensor coalgebras. [

3.2.4 A characterisation of homotopy equivalences
Let (TA,A,m) and (T'B, A, m) be differential graded tensor coalgebras.

Theorem 79 Let f: TA — TB be a morphism of differential graded coalgebras.

Then f is a homotopy equivalence of differential graded coalgebras if and only if Vf = f11 is
a homotopy equivalence of differential graded modules.

In other words, the functor V: dtCoalg — dgMod from Lemma 68 reflects isomorphisms.

Proof. Recall that we denote by [f] the homotopy class of f under coderivation homotopy.
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If f is a homotopy equivalence of differential graded coalgebras, then [f] is an isomorphism
and hence V[f] is an isomorphism. By construction of the functors V and V we conclude that
V f is a homotopy equivalence of differential graded modules.

Conversely, suppose that V' f = f11 is a homotopy equivalence of differential graded modules.
By Lemma 78 we can factorise f into an acyclic cofibration s: TA — T'C and an acyclic
fibration t: TC' — T'B of differential graded tensor coalgebras, i.e. we have f = st.

By Lemma 75 both s and ¢ are homotopy equivalences of differential graded tensor coalgebras,
i.e. [s] and [t] are isomorphisms. But then also [f] = [st] = [s][¢] is an isomorphism, i.e. f is a
homotopy equivalence of differential graded coalgebras. O

Remark 80 Suppose that R is a field. In this case, a morphism of differential graded modules
is a homotopy equivalence if and only if its a quasiisomorphism.

Recall that an A -quasiisomorphism is an A-isomorphism f = (fx)r>1 such that f; is a
quasiisomorphism of complexes, cf. Definition 13 and Remark 15.

Hence Theorem 80 implies that over a ground field an A ,-morphism is an A -quasiisomorphism
if and only if it is an As.-homotopy equivalence.

In this form, the theorem is due to Prouté [Pro84, Théoreme 4.27], see also [Kel01, Theorem
in section 3.7] and [Sei08, Corollary 1.14].

Remark 81 In general, the functor V: dtCoalg — dgMod is neither full nor faithful.

Proof. Let R = K be a field of characteristic char K # 2. Let the grading category Z = Z be
given by the integers.

To show that in general V is not full, consider the graded module A with A* = K for z = —1
and A* =0 for z € Z\ {—1}.
Let m: TA — T A be the coderivation of degree 1 with my; = 0 for k # 2 and

mo: AR A — A
{abeA—l if »= 2 and |a| = |b] = -1

miis (@®b) else

This defines a coderivation by Lemma 22.(2). We claim that m is a differential, i.e. we claim
that mm = 0. By Lemma 24.(1) it suffices to verify that

0= Z (1dG" @ms1 ®@1id5) My 141

r4s+t=k
rt>0,s>1

holds for £ > 1. However, since my 1 = 0 for k # 2 it suffices to consider the case k = 3. In
this case, we have to verify that

0= (m271 X idA)m271 + (idA &® m271)m271.

Let z€Zand a®@b®@ce€ (A® A® A)*. Since m3 ; = 0 for z # —2, we only have to consider
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the case a,b,c € A~!. Then we have

(a®@b®c) ((m271 & idA)le + (ida ® mgjl)mgyl)
= —((a®b)ma1 ®c)ma1 + (a® (b® c)ma1)ma
= —(ab® c)ma1 + (a ® bc)ma 1
= —abc + abc
=0.

Hence m is a differential, i.e. TA = (T'A, A, m) is an object in dtCoalg. Note that T'A is the
Bar construction of the unital differential graded algebra K concentrated in degree 0.

Let f: TA — TA be a morphism of differential graded coalgebras. Then f is uniquely
determined by its components fj 1 : A®% 5 A which are graded linear maps of degree 0. For
degree reasons, the components f; 1 have to be zero for £ > 2, as a non-zero element of A®k
has degree —k, but A only has non-zero elements in degree —1. Moreover, by Lemma 24.(2)
they satisfy

k
> (A @me1 @) frareer =, Y. (fu1®...® fi1)mea

r+s+t==k r=1 i1+...+i.=k
>0, >1 i1,y >1

for k > 1. In particular, they have to satisfy

mo1fi1 = (fi1® fi1)mar.

But then there is no morphism of differential graded coalgebras f such that V f = f11 = 2-id 4.
Since my 1 = 0, the (differential graded module) homotopy class of V f is given by [V f] = {V f]},
hence there is no morphism of differential graded coalgebras f such that V[f] = [V f] = [2-ida].
It follows that V is not full.
To show that in general V is not faithful, we construct a differential graded coalgebra T A,
i.e. an object in dtCoalg, and a morphism of differential graded coalgebras f: T'A — T A such
that V[f] = V[idra], but [f] # [idz4].
Consider the associative two-dimensional K-algebra K[z]/(z?). Let A be the Z-graded module
with A=2 = A1 = K[z]/(2?) and A* =0 for k € Z\ {~1,—2}.
Let m: TA — T A be the coderivation of degree 1 with my; = 0 for k # 2 and

mo1: ARA — A
{xab €Al ifz=-2and |a] = |b] = -1

mii: (@®h) else

This defines a coderivation by Lemma 22.(2). We claim that m is a differential, i.e. mm = 0.
By Lemma 24.(1) it suffices to show that for k > 1

. . 1Rt

0= E (ld?ir ®ms1 & ld?i )mr+1+t71
r+s+t=k
rt>0,s>1

holds. However, since my ;1 = 0 for k # 2, it suffices to consider the case k = 3. In this case,
we have to verify that

0= (mg1 ®ida)ma 1 + (ida @ ma1)ma .
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Let zeZand a®@b®ce (A® A® A)*. Then

(a®b®c)((meg ®@idg)mai + (ida ® ma1)me,)
= (=D ((a @ bymas @ )may + (a® (b® c)ma,)ma 1

Since m3 = 0 for z # —2, we only have to consider the case a,b,c € A1, We obtain

(a®b®c)((me) ®ida)ma + (ida @ ma1)ma1)
= —((a®b)ma1 ®c)ma1 + (a® (b® c)ma1)ma
= —(axb ® c)ma 1 + (a @ xbc)maq
= —abcx? + abea?
=0.

It follows that mm = 0. Note that T'A is the Bar construction of a non-unital differential
graded algebras concentrated in degrees 0 and —1.

Let f be the morphism of graded coalgebras with f11 = id4, fx1 = 0 for £ > 3 and

f271: ARA — A
{ab €A? ifz=-2and [a] = |b] = -1

S a®b
f2’1 0 else.

Recall that all components are graded linear maps of degree 0. This defines a morphism of
graded coalgebras by Lemma 22.(1). We claim that f is a morphism of differential graded
coalgebras. By Lemma 24.(2) it suffices to show that for k£ > 1

k
Y (Y @me1 @A) frema =), D (fua®-.@ fi)me
r+s+t=~k r=1 i1+...+ir=k
>0, >1 i1yir>1

holds. For k£ = 1, both sides of the equation equals zero since my; = 0. For k£ = 2, we have to
show that

ma1fi1 = (fi1® fii)man,

which is fulfilled since fi1 = idra. For k = 3, we have to show that

(mo1 ®idg+ida ®@ma1)fo1 = (f2,1 ® fi1 + f11 @ fa1)ma.

The right-hand side is zero since fy 11 = 0. For the left-hand side a similar calculation as for
mm = 0 above shows that it also equals zero, i.e. for a,b,c € A~! we have

(a®b®c)((mey ®@ida)far + (ida®@ma1)f1)
= —((a®b)ma1 ®c)fa1+ (a® (b®c)may)far
= —(axb®c)f21 + (a ® xbc) fa1
= —abcx + abcx
=0.
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For k = 4 we have to show that

0= (f2,1® fa,1)ma.

Again, this equation holds since f;- 11 = 0. Finally, for £ > 5 both sides of the equation are
ZEero.

Now consider the identity idr4. By construction, we have Vf = idg = Vidpa, hence

VIfl=[Vfl=[Vidra] = V]idra].

Assume that [f] = [idpa4], i.e. assume that f and idp4 are coderivation homotopic. Then there
is an (f,idp4)-coderivation h: TA — T A of degree —1 such that f —idpg = hm + mh. By
Lemma 37, such a coderivation is uniquely determined by its componentsa hy 1 : A®k 5 A,

For degree reasons, h; 1 = 0 for £ > 2, as a non-zero element of A®F has degree ¢ < —Fk, but
hy.1 sends it to something in A of degree / — 1. But A has only non-zero elements in degrees
—1 and —2. So from f —idr4 = hm + mh we can conclude that

fo1 = (f —idpa)21 = (hm +mh)21 = haama1 +maihi 1.

By Lemma 37 we have hoo = f11 ® hi1 + h11 ®ids. But since h(1)71 = 0, it follows that
h2’2m2,1 = 0. So we have f271 = mg’lhljl‘

A lg AL

hi1

A—2 ) A—l

Restricted to A™1 ® A1, the map fo1: A7 ® A™1 — A™2 is surjective, hence has a two-
dimensional image. However, ma1: A~! ® A=! — A~! has image in xK[z]/(2?), i.e. its image
is one-dimensional. This gives a contradiction. O

3.3 Localisation

In this section, we show that the (coderivation) homotopy category dtCoalg is the localisation
of dtCoalg at the set of homotopy equivalences, cf. Theorem 92 below.

3.3.1 A tensor product

We construct a tensor product of a differential Z-graded algebra and a differential Z-graded
tensor coalgebra, cf. Definition 29. Via the Bar construction differential graded tensor
coalgebras correspond to As.-algebras. For classical Ao-algebras, i.e. in the case when the
grading category is Z, general tensor products of A.-algebras have been constructed in [SU04]
and [Amol2].

More precisely, for a differential graded tensor coalgebra T'B, i.e. an object in dtCoalg, we
construct a functor

— XTB: dgAlg; —— dtCoalg,

cf. Proposition 86 below.

Recall that graded means Z-graded over a grading category Z.
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Definition 82 An A-algebra (A, (mg)r>1) is called a differential graded algebra if my =0
for k > 3.

We abbreviate A = (A, u,0) := (A, (my)g>1) where p = my is the multiplication and § = my is
the differential of the differential graded algebra A.

The Stasheff equations for A reduce to the following three equations that hold in the differential
graded algebra A.

o (p®ida)p = ({ida®@p)n  (Associativity)
e 30=0
o ud=(1dg®d+0®ida)p  (Leibniz rule)

We often write ab := (a ® b)p for a®@ b € (A ® A)? in some degree z € Mor(Z). Note that
using this notation the Leibniz rule reads (ab)d = a(bd) + (—1))(ad)b.

Let A= (A, p,0) and B = (B, u1,0) be differential graded algebras. A morphism of differential
graded algebras f: A — B is a graded linear map of degree 0 such that fu = u(f ® f) and
fo =4f hold.

We obtain the category dgAlg of differential graded algebras, with composition as in grMod.
We write dgAlg, if we want to make the grading category Z explicit.

Lemma 83 For a Z-graded module M let M'* be the graded module that is at z € Mor(Z)
given by

(MWZ)Z =

MU if 2 =id,[| 2]] for some 2 € Ob(Z)
0 else.

For a Z-graded linear map f: M — N of degree p € Z let f1*: M1* — N'* be the graded
linear map of degree p that is given at z € Mor(Z) by

(fwz)z — {fLZJ if z =idg[|z]] for some x € Ob(Z)

0 else.

Then the following defines a functor.

grMod; —— grMod,
M — M*
(f: M - N) —— (f*: M* = NI*%)

Proof. Let M be a Z-graded module and let z € Mor(2). If z = id,[|z]] for some = € Ob(Z),
we have (M'%)? = M!? and thus

(id)y)* = id} = idyies = idaz)e = idipe .
If z is not of this form, we have (M'%*)? = 0 and thus
(id7)* =0=1id%, .
We conclude that idﬁ = id 1z holds.
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Let f: L — M be a Z-graded linear map of degree p € Z and let g: M — N be Z-graded
linear map of degree ¢ € Z. Let z € Mor(2). If z = id;[|z]] for some z € Ob(Z), note that
z[p] = idg[| 2| + p| = id.[| 2[p]|] and thus

((f9)1?)* = (fg)l& = flelglelr = flal glalpl] — (fm)Z(gm)z{pl = (F1%41%)%.

If z is not of this form, then also z[p] is not of this form. Thus we have

(7)) = 0= (/) (g™ = (77%g™)".
We conclude that (fg)'* = f!*¢'* holds. O

Lemma 84 Let A= (A, u,d) be a differential Z-graded algebra, i.e. an object in dgAlgy. Let
TB = (TB,A,m) be a differential graded tensor coalgebra, i.e. an object dtCoalg = dtCoalg, .

Let (T(A* @ B), A) be the graded tensor coalgebra over A'* @ B. Consider the coderivation
m: T(A* @ B) — T(A®* @ B) of degree 1 with
mp = §1% ®idp +id 41z @ m1 1

and

mp1: (A*@B)®F — A*B

m?l : ®§:1 a;®b;, —— (—1)21§i<ﬂ'§k Lb:]La;] ar---arp X (b1 ®X...R bk)mk,l
for k > 2, ¢f. Lemma 22.(2).
Then ARTB := (T(A* ® B), A,m) is a differential graded coalgebra.

Proof. By Lemma 24.(1) it suffices to show that

. . 1t
0= Z <1d®r Kms1 ® id® )mT+1+t,1
r+s+t=k
rt>0,s>1

holds for k > 1. We write id := id 41z p.
Consider the case k =1 first. We obtain using Lemma 83

mpimy = ((51Z ®idg + iquz X m171)(512 ®idp + idA1z, ®m171)
§1%s1% ®idp +5WZ X my 1 — 5% ® mi1 +idygiz @ my1ma
(
0

= (00)1* @ idp +id 4z @ My 1M1

Now let £ > 2. We first separate the summands that contain a factor my 1.

Z (id®r R@mg i ® id®t)mr+1+t71 = ( Z (id®r @mp1 & id®t)mk,1> +my1my g

r+s+t=k r+1+t==k
rt>0,s>1 r,t>0
. . 10t
+ ( Z (id®" @myy ®id® )mr-i-l-i-t,l)
r+s+t=k

r>0; k—1>s>2
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Now let z € Mor(2) and let @ ; a; @ b; € ((A* @ B) ®k)z. We consider the summands that
contain a factor my ; first.

(a1 ®b ®...® ap ® by)my my

= (—1)2151'<j§vu”'J La;] (a1-+-ar @ (b1 @ ... @bg)my)(0* @idg +id 412 @ m11)

k
= —(—1)(219<;§k“’iJ Lag))+ (33 1b4)) (a1---ag)d @ (b1 @ ... QR bg)my
+ (—1)219<i§kLbiJ l‘ajjal crap ® (b ® ... @ br)myima

Moreover, we have the following summand for r,¢ > 0 with r + 14+t = k.
(a1 @b ®...0a @b)(id* @my 1 ®id*")my

O R <® (@i @ b)) @ (@11 @ brp1)mi @ Q) (4; @ bi)>mk,1

=1 i=r42

r k
= (-1 )LbT“H(Ez rola ail +10:)) (® (a; ®b;) ® ar410 @ by @ ® (a; ® bi))mk,l
i=1 i=r+2

+ (_1)25:”2 il e <® (a; ® ;) ® ar1 ® bryimi ® é (ai ® bi))mk,l
i=1 i=r+2
= (-1 )LleH(Zl "+2LaiJﬂbiJ)J“(ZlgiqgkLbU LajJ)*(Z::ﬂbiJ)
(a1 ---ar(ary16)are - ar) @ (b1 ® ... @ br)my
+ (—1) (Eialad+ o)+ (zmmtbnau) +(Th, lail)
(a1 ar) @ (01 @ ... Qb @ (brg1)mM11 @bria @ ... ® by)my
= (—1)(Zlgz‘<j§kLbiJL“jJ)ﬁL(ZZ bal)+(2F r+glad)
(a1 ---ar(ary16)are - ax) @ (01 ® ... @ br)my
i (_1)21§i<j§ktb4 laj]
ay--ag) @ (b1 @ ... @ by)(id% @m1 @idE)my

Finally, we have the summands that do not contain an my 1, for r,t > 0and k —1 > s > 2
with r + s +t = k. Note that in this case r +1 +¢ > 2.

(a1 @b ®...® a ®bg)(id®" @mg 1 @ id®)m, 41441

& r r+s
= (_1)Zi:r+s+1LGiJ+LbiJ <® (a; @ b;) ® ( ® (a; ® by) )ms 1 ® ® (a; ® b;) )mr+1+t,1
i=1 i=r+1 i=r+s+1

_ (—1) el )+ (C s ciy s il L))
r k

' <® (ai X bz) ® Ap41 - Qprys X (br+1 ®...Q br+s)ms,1 X ® ((Ii &® b¢)>mr+1+t’1
=1 i=r+s+1

— (_1) (Zf:r+s+1 \-aiJ+LbiJ)+ (Zr+1§i<]’§r+s [b:] Laij)
(Zl<z<r Lb J ajJ)+(Zr+1<z<'r+5 |_b J LaJJ) (Zz —rdst1 \_azJ) (Zr+s+1§i<j§k Lsz LajJ)

. 71) 1<j<k r+s+1<j<k

(a1 ap) @ (1 @ ... @b @ (b1 @ ... @ bpys)Ms1 @ brysy1 @ ... @ by)Mppi441
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= (—1)Zlgi<j§k [b:] LajJ
ar-ag) ® (01 ® ... @ be) (idE" @ msy @ idE)myp144

Claim: The following equation holds for k£ > 1.

k
Z (fl)zi:'r#»Q LazJ (al e a/T(CLT‘+15>aT‘+2 PR ak) — (al e ak)6

r+l1+4+t=k
r,t>0

We prove this claim by induction on k. For k = 1 both sides equal a;d. Now assume that the
equation holds for some k& > 1. We have using the inductive hypothesis and the Leibniz rule
for the differential Z-graded algebra A

k+1 )
Sz e (arg10)ara  axg)
r4+1+t=k+1
r,t>0

= (—1)lows] ( > (‘UZLHLW (a1 -+~ ar(ar410)aryo - ak)>ak+1 + (a1 - ag(ag419))

r+l4+t=~k
r,t>0

= (—Dl ) ((ar - - ap)d)apgr + (a1 - - ax(ax119))

= (a/l DR a/k+1)6.
This proves the claim.
Using this claim, the previous calculations and using Lemma 24.(1) for the differential graded
coalgebra (T'B, A, m) we obtain

Z (a1 R R...Q0a, R bk)(id®r RXms1 ® id®t)mr+1+t,1

r+s+t=~k
rt>0,s>1

= Z (a1 @b ®...0a ®b)(id* @my 1 ®id*")my

r+1+t=k
r,t>0

+ (a1 @01 ®...0a @ by)my 1my
+ Y (@@ ®...®a ®b)(Id @me; ®id®)my g4

r4s+t=k
rt>0; k—1>s>2

= (—1)21S1'<j§1cu’iJ laj)

. ( 3 (_1)(25:1Lbd)+(2§=r+2 la:]) (a1 ar(ars10)arps -+ ap) ® (b1 @ ... @ by)my1

r+l1+t==k
r,t>0

+ ) (aa) @1 ®... @ b)Y @my @ idF )my,

r+l1+t=k
r,t>0

k
. (_1)21-:1 [b:] (a1 ag)d @b ®...® bk)mk,l
+ (a1 ap) ® (b1 @ ... @ bg)mg1mi

+ > (a1 ap) ® (1 ®...®by)(1IdY @me1 ® id%t)mrJrlth,l)

r+s+t=~k
rt>0; k—1>s>2
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= (—1)21Si<jgku’ﬂ La;]

. ((_1)Zfllbd ( 3 (_1)Zf:r+2 950 (ay - ap(ars16)arsn - ap) @ (b1 ® ... @ bp)mp.

r+1+t=k
r,t>0

—(a1-ap)d @ (b ®...® bk)mk,l>

+ Y ( ®@ (b1 ®...®bg)(idS @ms1 ® id%t)mr+1+t71>
r+s+t=k
r,t>0,s>1
=0.
We conclude that AKX TB is a differential graded coalgebra. g

Lemma 85 Let A= (A,u,d) and A= (fl,u, d) be differential Z-graded algebras, i.e. objects
in dgAlgy. Let TB = (TB,A,m) be a differential graded tensor coalgebra. Let f: A — A be a
morphism of differential Z-graded algebras.

Let fRTB: ARNTB — AR TRB be the strict graded coalgebra morphism with
(fRTB) 1 :=f*®idg: A® @B — Al*

cf. Lemma 22.(1) and Definition 69.(3).
Then fXTB is a morphism of differential graded coalgebras.

Proof. Write f := fXTB. Using Lemma 24.(2) it suffices to show that for k£ > 1 the following
equation holds.

k
Yo (([d¥@me @id¥ )i => Y, (Fu1®...®@fi,1)me

r4s+t==k 0=1 i1+...+ip=k
r,t>0,5>1 U1t 21

Since § is strict, i.e. fp1 = 0 for k > 2, it suffices to show that
k
my1f1,1 = f%lmk,l

holds for £ > 1. For &k = 1 we have

§1* @idp +id 41z @ my 1) (f1* @ idp)
5f) ®1dB+f ®m1,1

myifi1 = (
= (
=(f ) ®@idp +f1* ® ma1
= (1
=h

® ldB)(5 ®idp +id 41z @ my 1)

amy.

For k > 2, let z € Mor(2) and @, a;®b; € ((A*® B)®*)*. Since f is a differential Z-graded
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algebra morphism, it is of degree 0 and satisfies (a1 - - - ax)f = (a1 f) - - (axf). Hence we obtain
(a1 @b ®...®ar @ by)my 111

)zﬂﬁwum car @ (b1 @ ... @ by)mg) (f* ®@idp)

1) iz lillail gy ) f @ (b ® ... ®br)my 1

= (-
(=
(—1)2i= i1l la ) (a1 f) - (arf) @ (b1 ® ... @ bg)my
((arf) @ b1 ®...® (apf) @ br)my
=(
= (a1

a1 @b ®...Qa® bk)(f1z’ & id3)®kmk,1
Rb1R...Qa® bk)f%’fmk,l. O

Proposition 86 Let TB = (T'B,A,m) be a differential graded tensor coalgebra. Then the
following defines a functor.

—XTB: dgAlg; —— dtCoalg
A — ARTB
(f:A= A — (fXTB: AXNTB — AXTB)

Proof. Let A be a differential Z-graded algebra. The object AKX TB in dtCoalg has been
constructed in Lemma 84. By Lemma 85, the morphism of differential graded coalgebras
idaXTB: ARTB — AXTB is the strict graded coalgebra morphism with

(idaRTB)1 1 =idf ©idp = id g1z ®idp = id 412 -

Hence it is the identity on AXT B, which is by construction a tensor coalgebra over the graded
module A%

Now let f: A — A’ and g: A’ — A” be morphisms of differential Z-graded algebras between
the differential Z-graded algebras A = (A, u,6), A’ = (A’ u,0) and A” = (A", p,0).

Since composition of strict coalgebra morphisms is again strict, also (f KTB)(¢g X TB) is a
strict coalgebra morphism with

((f@TB)(Q@TB))M = (fXTB)11(gXTB);
= (f*@idp)(¢9"* ®idp) = (f9)* ®idp = (fgRTB)1,1
Hence (f XTB)(gXKTB)= fgXRTB. O

Let Rz be the Z-graded module with R) = R and R = 0 for z € Z \ {0}. That is, Rz is
the tensor unit object in the category of Z-graded modules, cf. Remark 8. Note that Ryz is
a differential Z-graded algebra with multiplication given by the multiplication in R and the
differential being 0.

Lemma 87 Let TB = (TB,A,m) be a differential graded tensor coalgebra.
Let vrg: Rz RTB — TB be the strict graded coalgebra morphism with

(VTB)LI: R%Z B — B
(vrB)iq: r®b —— rb.

Then vrp is an isomorphism of differential graded coalgebras.
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We will sometimes identify Rz ®TB and TB along vrp.

Proof. Note that R]ZZ’ = R is the tensor unit object in the category of Z-graded modules and
(vrp)1,1 is the tensor unit isomorphism, cf. Remark 8. Using Lemma 26 we conclude that vrp
is an isomorphism of graded coalgebras.

To verify that vrp is an isomorphism of differential graded coalgebras, it suffices to show that
vrp is a morphism of differential graded coalgebras, cf. Remark 17. Using Lemma 24.(2) it
suffices to show that for k£ > 1 the following equation holds.

> (d* @mey @1d%) (vrB)rp14e1 = Z > ((vrB)ia ® ... @ (VrB)ig1) Mg

r4+s+t=~k {= 1+ +i= k
r,t>0,s>1 U1yt >1

Since vpp is strict, i.e. (vrp)k,1 = 0 for k > 2, it suffices to show that
my1(vre)ia = (vre) i mea

holds for k > 1. Let z € Mor(Z) and ®%_;r; ® b; € ((R%Z ® B)®*)*. 1t suffices to consider
the case when |r;| =0 for 1 <i < k. For k = 1 we obtain

(r1 ® by)myvrg = (1 @ by)(6'* @ idp +id 41z @ m11)vre
= (r1 @ bymi1)vrp
=r1(bimi1)
= (riby)mi

= (r1 @ b1)vrpma 1.

For k > 2 we obtain

(Mehe...er@by)mg(vre)in = ((r1- © (01 ®... @ bp)my1) (vrp)ia
=(ry-- )((b1 ®...® bk)mk,l)
((rlbl) (kak))mk,l
= (@b ©...0 7, @b)(vrE)m,. 0

Lemma 88 Let f: A — A be a morphism of differential Z-graded algebras between the
differential Z-graded algebras A = (A, p,0) and A = (A, p,0). Let TB = (TB,A,m) be a
differential graded tensor coalgebra. Suppose that f is a homotopy equivalence of differential
Z-graded modules between (A,8) and (A, 6).

Then fXTB: AXTB — ARTB is a homotopy equivalence in dtCoalg.

Proof. By assumption there is a morphism of differential Z-graded modules ¢g: A — A and
Z-graded linear maps h: A — A and h: A — A of degree —1 such that idy —fg = hd + dh
and id; —gf = hé + &h.

We use Theorem 79 to show that f X T'B is a homotopy equivalence in dtCoalg. Using this
theorem, it suffices to show that V(f XTB) = (f XTB)11 = f* ®idp, cf. Lemma 85 for the
last equality, is a homotopy equivalence of differential graded modules between (AWZ ® B,my )
and (A'* ® B,my 1). Recall that m;; = §'* @ id +id ® my 1, cf. Lemma 84.
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Consider the graded linear map ¢'* ® idg: A* @ B — A1* @ B of degree 0. Since we have

(¢ ®idp)mi1 = (91" ®idp) (0" @ idp +idyz @ m1 1)
= (g)* @idg+g'* @mi,
= (6g)* @idg+g'* @my,
= (6" @idp+id 412 ®m11)(g'* ®idp)
=my1(9"* ®idp)
the graded linear map ¢'* ® idp is a morphism of differentiz}l graded modules. Now consider
the graded linear maps M2 ®idg: A* @ B — A* @ B and h'* @ idg: A% 9 B — A% ® B of
degree —1. Then the following equations hold.
my 1 (h'* ®idg) + (h'* @ idg)my 4
= (6" ®idp +id 41z @ my 1) (h1* @ idp) + (h'* @ idp)(6'* @ idp +id 41z @ m11)
= (6n)* @idp — h'* @ m11 + (h6)* @ idp +h* ® ma s
= (0h+ hd)'* ®@idp
= (ida —fg)"* ®idp
=id 2 ®idg —(f1* ®idp)(¢'* ® idp)
my 1 (h1* ®@idp) + (h'* @ idp)my
= (8" ®@idp +id g2 @m1,1)(A* ®@idg) + (A* @ idp)(6'* @ idp +id 512 @ M)
= (6h)* ®@idp — h'* © mig + (h6)* @idp + h1* @ mi,
= (0h + ho)* @ idp
= (idg —gf)* ®idp
=id 1z ®idp —(9'* ®idp)(f* ® idp)

This shows that f1* ® idp is a homotopy equivalence of differential graded modules. O

3.3.2 The homotopy category as a localisation

We show that two homotopic maps in dtCoalg fit into a certain commutative diagram, cf.
Lemma 91 below. We use this diagram to prove that dtCoalg is the localisation of dtCoalg at
the set of homotopy equivalences, cf. Theorem 92 below.

In the case of A..-algebras over a field, this commutative diagram and the interval algebra,
defined in Lemma 89 below, used in its construction can be found in [Sei08, Remark 1.11].

Lemma 89 Consider the the Z-graded module I with I' := R, I° :== R® R and I? := 0 for
2 € Z\{0,1}. Let 6: I — I be the graded linear map of degree 1 with

50::<I?§>:I0:R@R—>R:11
— AR

and with 6% := 0 for z € Z\ {0}. Let pu: I ® I — I be the graded linear map of degree O given
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by

0 g — J°
(ro,71) @ (S0,51) +—— (1r050,7151)
pl: Pegltel'el® — I
((ro,m1) ®t, T @ (Fo,71)) +—— 7ot + 17

and by u* =0 for z € Z \ {0, 1}.
Then I = (I, p,0) is a differential Z-graded algebra, the interval algebra.

Proof. Since 6% # 0 only if z = 0, we have §0 = 0. Hence ¢ is a differential.

We verify associativity of the multiplication p, i.e. we verify that (id; ® p)*p* = (p ® idy)*p?
holds for z € Z. Since p* =0 for z € Z\ {0, 1}, we only have to consider the cases z = 0 and
z=1.

For z = 0, note that (I @ I® )" = 1'® I°® I°. Let (rg,71) ® (s0,51) ® (to,t1) € '@ [° @ I°.
We obtain

= ((ro, 1) ® (soto, s1t1))p
= (rosoto, T151t1)

((ro,m1) @ (80,51) @ (to,t1)) (k@ id)p = ((roso,r151) @ (o, t1))p
= (

rosoto, r1s1t1).

((ro,71) ® (s0,51) @ (to,t1))(ids @ p)p

For z=1,note that [ @ I@ ! = ('@ ") o (I’ I'e e ("2 I°® I').
Let t ® (ro,71) ® (s0,81) € I' ® I° ® I°. We obtain

(t® (ro,m1) ® (s0,51))(id; @ p)p = (t ® (roso,r151))p
= t?”181

(t® (r0,71) ® (s0,51)) (0 @ idr)p = (tr1 @ (s0,51))
=1{ri1s1.

Let (ro,71) ® t ® (s0,51) € I' ® I' @ I°. We obtain

((ro,m1) ®t) @ (s0,51))(idr © p)p = ((ro,m1) © ts1)
= 7”0t81

((r0,m1) @t ® (s0,51)) (@ idr)p = (rot @ (s0,51))
= 7otS1.

Let (ro,71) ® (s0,51) @t € I°% I I'. We obtain

((ro,m1) @ (s0,51) @ t)(id; @ p)pu = ((r9,71) @ s0t))
= ToSot

((ro,m1) @ (s0,51) @ t) (@ idr)p = ((ros0,7151) @ 1))
= ToSot.
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We verify the Leibniz rule, i.e. we verify that (id; ® § +d ® id;)*p* T = p*6%: (I®1)* — I*+!
holds for z € Z. Since I* =0 for z € Z \ {0, 1}, it suffices to consider the Leibniz rule for the
case z = 0.

Note that (I ® I)? = I° ® I°. Let (ro,r1) ® (s0,51) € I° ® I°. We obtain

((ro,m1) ® (80,81))(idr @5+ d @idr)p = ((ro,m1) ® (so — s1) + (ro — r1) ® (80, 51)) 1
= ?”0(80 — 81) + (7‘0 — 7’1)81
=T0oSo —T151-

((ro,71) ® (80, 51)) 10 = (roso,r151)0
=T0S0 —T1S1- ]

Lemma 90 Define the Z-graded linear maps of degree 0
Po: I — RZ P1: I — Rz
po: (ro,m1) —— 7o pi: (ro,r1) — 71,

where p§ =0 and pi =0 for z € Z \ {0}.
Moreover, define the Z-graded linear map of degree O
J: RZ — I

P e (),

where j* =0 for z € Z \ {0}.
Then po, p1 and j are morphisms of differential Z-graded algebras and the following diagram
commutes.

Moreover, pg, p1 and j are homotopy equivalences of differential Z-graded modules between

(1,0) and (Rgz,0).

Proof. Both py and p; are morphisms of differential Z-graded modules, as % =0 for z € {0}
and I~! = 0. To show that pg is a morphism of differential Z-graded algebras, it suffices to
show that (p§ @ p8)u® = uOpf. But for (ro,71) @ (s0,51) € '@ IY = (I ® I)° we have

((7“0, 7”1) & (So, 81))(290 ®P0),u =ToS0 = (7“050, 7‘181)170 = ((7"0,7“1) ® (507 51))MP0~

A similar argument shows that p; is a morphism of differential Z-graded algebras.

To show that j is a morphism of differential Z-graded modules, we have to show that j°6° = 0.
But for r € R = RY, we obtain

73200 = (1,16 =r —r = 0.
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Hence j is a morphism of differential Z-graded modules. To show that j is a morphism of
differential Z-graded algebras, we have to show that (5 ® jO)u® = x°5°. But for r,s € R we
have

(res)(j@ju=(rr)@(s,s)p=(rs,rs) = (rs)j = (r@s)uj.
Hence j is a morphism of differential Z-graded algebras.

For the equation jpg = idRZ, it suffices to show that j°pQ = idg. But for r € R = ROZ we have

ri%p) = (r,7)p) =r.

The same argument shows that jp =idp, .

To show that pg, p1 and j are homotopy equivalences of differential Z-graded modules, it
suffices to show that j is a homotopy equivalence. Indeed, if j is a homotopy equivalence then
the equations jpy = id g and jp; = id By imply that pg and p; are homotopy equivalences.
We already know that jp; = id By So it remains to show that p1j is homotopic to id;. Consider
the Z-graded linear map of degree —1

h12 I — 1
h%: r —— (r,0),

where hj = 0 for z € Z \ {1}. We claim that id; —ppj = dh1 + h1d. It suffices to show thst
ids- —pij* = 6°hiT! 4+ h76%~ 1 holds for z € {0,1}.
For z = 0, we have to show that idrer —p¥4° = 6°hi. But for (rg,r1) € R® R = I° we have

(ro,r1) — (ro,r1)pY5% = (ro,71) — r15° = (ro,71) — (r1,71) = (ro — 71,0)
(r0,71)0°hi = (ro — r1)hi = (ro — 71,0).

For z = 1, we have to show that idg = h{d". But for r € R = I we have
rhic® = (r,0)0° =r. O

Lemma 91 Let TA = (TA,A,m) and TB = (TB,A,m) be differential graded tensor
coalgebras.
Let f: TA—TB and g: TA — T B be morphisms of differential graded coalgebras.

Let h: TA — TB be an (f, g)-coderivation of degree —1, cf. Definition 34. Consider the graded
coalgebra morphism H: TA — I KTB given by

Hpy: A® 5 2@ B

Hlj,l: G R...ar +—— (1,0)®(a1®...®ak)fk71+(0,1)®(a1®...®ak)gk71
N—~— S—~—
e([WZ)idI:IO e(IWZ)idz:IO
()Xl 1 @@ e... @a)h
(—1)2-i= L@@ ®... @a)h,

e(ﬂZ)idx[l]:Il

fork>1and z: x — y in Z. This defines a graded coalgebra morphism by Lemma 22.(1).

Then H is a morphism of differential graded coalgebras if and only if f —g = hm + mh, i.e. if
and only if h is a coderivation homotopy between f and g, cf. Definition 57.
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Moreover, if h is a coderivation homotopy from f to g, then we have the following commutative
diagram in dtCoalg.
f TB
poXTB

TA —H , imTB 25

p%

g TB

Recall that we identify along the tensor unit isomorphism vrp from Lemma 87.

TB

Proof. By Lemma 24.(2) the graded coalgebra morphism H is a morphism of differential
graded coalgebras if and only if the Stasheff equation for morphisms holds for £ > 1.

k
Z (id%r dms1 & id%t)Hr+1+t71 = Z Z (Hil,l ®...Q Hibl)mm

r+s+t==k (=1 i1+...+ip=k
rt>0,s>1 01 yeenytp 1

Here m denotes the differential on I XIT'B, c¢f. Lemma 84.
Let z € Mor(Z) and let a1 ®...®ay, € (A®*)?. We obtain for a summand in the left-hand side

(a1 ®...® ak)(ldﬁr Rms1 @ id%t)HT+1+t71

k} .
= (—1)Zi:r+5+1 La:] (a1 R...Q0ar® (aTJrl ®...® ar+3)m371 RArgs+1® ... & ak)Hr+1+t71

k

= (* 1)Zi='r-+s+1 Las)

: <(1, )R ®...0a @ (Ur4+1 Q... ® Args)Ms1 @ Qpgsi1 @ ... @ ) froi4,1
+(0,1)® (a1 ®...0a, @ (Ar41 @ ... @ Apys)Ms1 @ Urysi1 @ ... @ k) Gr1+441
(=Dl 8 (01 ® . ay @ (1 © . ® )Mt ® syl @ ... @ ak)hr+1+t,1>
=(L,0)® (11 ®...®ax)(id]" @ms1 @1dF) fri14e1
+(0,1) ® (a1 ®...®ax)(id] @ms1 @1dF) gr+1441
FEDZal 1@ (a1 ® .. © ar) (1S @ may @ 1S hys1ser.
On the other hand, we obtain for a summand in the right-hand side

(a1 ®...Q ak)(Hihl ®...® Hié,l)mm
0

= <®(ai1+...+iu_1+1 ®...Q ail+...+iu)Hiu,1>m€,1
u=1
l
= <® ((]" 0) ® (ail“l’n-“l’iu—l‘i’l ® R ® ai1+-‘.+iu)f’iu71
u=1 _\,a’_/
= 0,u ::ﬂo,u
+(0,1) ® (ai1+...+iu71+1 @...Q ai1+...+iu)giu,1
~——
=0lu ::ﬁl,u
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i1+ iy
j=i i La]
1 ® (_1)237 1Hetig 1T (ai1+_._+iu71+1 R...Q ai1+__+iu)h,-u,1)>mg71

=024

::ﬂQ,u
4

= > <® (Qpy,u ® Bvu,u))m&l. (+)

(V1,..,0)€{0,1,2} ¢ “u=1
We continue with the case £ =1 first.
(*) = Y (01 ®Bu1)(6 ®idp+idpz ®myy)
v1€{0,1,2}
= ()Tl (1,008 (a1 ® .. ® ax) fra + (1) X119 (0,1)0® (a1 ® .. ® ax)gea
(DXl e (-1l (4 . @ ag)he
+(L0)® (a1 ®...®ag)frimii+(0,1) ® (a1 ® ... Q@ ag)ge1mi
1

k
® (_1)Zi:1L“iJ (a1 ®...Q ak)hk,lml,l

k k
= (-D)Xmlli g (@ ®...® ar) fea — (D)X=l g (@ ®...® ar) g1
+ (L)@@ ®...® ak)fhlml,l +0,)® (01 ®...® ak)gk,lle

k
— (D)Xl ® (g ® .. ® ag)hgmag

Now we consider the case £ > 2 in (x).

(x) = Z (_1)21§i<j§éLﬂvi’iJ L) (am,l T ave,f) ® (/Bm,l ... /Bve,f)m&l
(v17.,,7q;z)6{0,1,2}><£

Note that the product in the first tensor factor is non-zero only if the tuple (v1,...,vy) equals
0,...,0), (1,...,1) or is of the form (0,...,0,2,1,...,1). In these cases, we have

Qo1 Qo = (170)(170):(170)
ary-rare = (0,1)---(0,1) = (0,1

Qo1 00010 g2 0y = (1,0)---(1,0)-1-(0,1)---(0,1) =1,

where 0 < r < ¢ — 1. Thus we obtain, using that |ap.] = |a14] = 0 and |ag, ] = 1 for
1 <u<l,

(*) = (1,0) @ (Bop ® ... @ Bo,e)mea + (0,1) @ (B11 @ ... @ B1g)mes

+ > (‘UZFlmUJJ 1® (Bo1 ®...@ Bor @ Poyrs1 ® P2 @ ... & Pre)me

r+14t=¢
r,t>0

4

=(L0)® <®(a¢1+...+iu71+1 ®...® ai1+...+iu)fiu,1)m£,1
—1

S

¢
+(0,1)® (®(ai1+“.+iu71+1 R...® a¢1+...+iu)giu,1>mz,1
u=1
AL )

+ Z (_1)1+Z;1=J;+27‘ \_ajJ (_1)Zj:i1+...+ir+1

r4+1+t=~¢
r,t>0
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.
1® <(®(ai1+...+iu1+1 ®...® az‘1+..‘+iu)fiu,1> (@i 41 @ -+ @ Qi iy Vi 1

u=1

L
® ( ® (ail+---+iu—l+1 ® et ® a’7/1++7fu)g'lu,1)>m€71
u=r+2

=(L0)® (@1 ®...0a)(fiy,1 ®...® fi,1)me
+ (0, 1) ® (CL1 ®...® ak)(gi171 R...Q gie,l)ﬂ”LgJ

- Y nEal)

r4+1+t=~¢
r,t>0

1@ (@ ®@...0a)(fi1®. .. ® fi,1 ®hi 1@ Gir 1 @ ... @ Gy, )M
To summarise, we obtain for the left-hand side of the Stasheff equation for morphisms

Z (a1 ®...®ap)(id] @mg1 ®id5") Hyq1441

r+s+t=~k
r,t>0,s>1

= Z (L) ® (a1 ®...® ak;)(idgr Rms1 @ id%t)fwrprt’l

r+s+t=k
rt>0,s>1

+ Z (0,1)® (a1 ® ... ®ag)(id5 @ms1 ®id5") gry14e1

r+s+t=k
rt>0,s>1

k
= Z (—1)22:1 Las] 1® (a1 ®R...Q ak)(idfr @mg1 & id%t)h,urprt,l.

r+s+t=~k
rt>0,s>1

On the other hand, we obtain for the right-hand side of the Stasheff equation for morphism

k
Z Z (a1 ®...®ak)(Hi171®...®H¢Z71)mg71

=1 i14...4+ip=k
01 yeeyip>1

k k
= (-DZ=lllg@me...© ag) fra — (-DZimliig(me... ® ak) g1

k
+Z Z (LO)® (M ®...®a)(fiy,1®...@ fi,1)me1

=1 i1+4...+ip=k
01 eeeytp 1

k
> > 0,1)®(a1®...®ar)(gi1® .. @ gi1)mea

=1 i1+4...+ip=k
01 eeytp 1

DD DI CRE

i1 dipg=k r14t=¢
115050021 rt>0

1®@@®..0ar)(fiu1®@ - @ fi,1 N1 ® Gipn1 @ ... @ Giyy )M

k
(=1

Since f and g are morphisms of differential graded coalgebras, the Stasheff equation for
morphisms holds for them, cf. Lemma 24.(2). Hence the Stasheff equation for morphisms for
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H holds if and only if the following equation holds for k > 1.

k
Z (—1)21‘:1 la:] 1® (a1 ®R...® ak)<id§w ®ms1 & id%t)hr_;,_l_;,_t’l
r4s+t=k

rt>0,s>1
k k
= (_1)Zi:1LaiJ 1®( ®...0a)f k1 — (—1)21':1“‘”1 ® (a1 ®...® ak)gk1
k
Yy Y (Xl
=1 i1+..4ip=k r+1+t=¢
01 yeeyig>1 r,t>0

1@ (@ ®...0a)(fi1®. .. ® fi,1 @hi 1@ Giryr1 ® ... ® Gy, )M

But this equation holds if and only if

fk,l — k1 = Z (1d(§T X ms,1 &® id%t)hr+1+t71
r4s+t=~k
r,t>0,s>1
k
> > Yo (a1 ® @ fi 1 @hi 1 ® i1 @ @ gig,y )

(=1 i1+4...+ip=k r+1+t=~
1] 4eeytp>1 r,t>0

holds for k& > 1. Consider the sums on the right-hand side. The first one equals using
Lemma 22.(2)

k k
. . 1Rt . . 1Rt
E (1d§T ®@mg1 ® 1d§ Vhrsi4e1 = E E (1d§r ®@ms1 ® 1df§ Yhea = E miehe 1.
r4s+t=k {=1 r+s+t=k /=1
rt>0,s>1 r4+14+t=~
rt>0,s>1

The second one equals using Lemma 22.(1), Remark 32 and Lemma 37

k
> o (fan® @ fi 1 O Ry 1 @ Ginin1 @ @ giy )

l=1 i1+4...4+ip=k r+1+t=¢(
01 yeenyip>1 r,t>0

= Z Z Z Z (fi1,1 ®...0 fir,l ® hs,l ® Giry21 ® ... Q gim)mm

=1 utstv=k i+ tir=u irqp2+..Fig=v
r4+1+t=~ 11,..0r2>1 Tprg2,etp>1
rtu,0v>0,5>1

=3 Y (fur ®hs1 @ Gog)men

=1 wu+st+v=k
r4+1+t=~¢
rt,u,0>0,5>1

k
= Z P g 1.
—1

Hence the Stasheff equation for morphisms for H holds if and only if the following equation
holds for k£ > 1.

fre1 — gr1 = (hm)g 1+ (mh) 1.
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By Remark 35 and Remark 59, both f — g and mh + hm are (f, g)-coderivations of degree 0.
By Corollary 38 two (f, g)-coderivations are equal if and only if their (k,1)-components are
equal for £ > 1. So we conclude that H is a morphism of differential graded coalgebras if and
only if f — g = hm + mh holds.

It remains to verify the asserted commutativites. The equations (j X T'B)(po X TB) = idrp
and (j XTB)(p1 XTB) = idrp follow from the previous Lemma 90.

It remains to verify that H(po X TB) = f and H(py XK TB) = g hold. As these are equations
of graded coalgebra morphisms, it suffices to show that

(H(poXTB))k1 = fen and (H(p1 XTB))k1 = gk

hold for k£ > 1, cf. Lemma 22.(1). However, in Lemma 85 we constructed po X7 B and p; XT' B
as strict morphisms of graded coalgebras. Hence we have

k

(H(poRTB))k1 =Y Hpe(po®RTB)y1 = Hy1(po R TB)11
=1

and similarly (H(p1 XTB))g1 = Hga1(p1 XTB)1 1.

Let z € Mor(2) and a1 ® ... ® aj, € (A%¥)?. Recall that we identify along the tensor unit
isomorphism vpp from Lemma 87. We obtain

(a1 ®...®ak)Hg1(po XTB)11
= (1,0 @ (@ ®... @ a) fr1) (P, @idp) + ((0,1) ® (01 ® ... ® ax)gr1) (P ©idp)
k
— (—nZiml (18 (0 © ... ® a)he) (0 ©idp)
=1® (a1 ®...®ak)fr1
= (a1 X...Q ak)fk’l.
Hence H(po X T'B) = f holds. Similarly, we have
(a1 ®...0a,)Hk1(p1t XTB)1,1
= ((1,0)® (@ ®... @ ax) fr1) (P @idp) + ((0,1) ® (01 ® ... ® ax)gr1) (P} @ idp)
k
— (—1)222':1\-@"J . (1 & (al R...Q ak)hhl)(pwlz & idB)
=1® (@1 ®...Qak)gr1
= (a1 R...Q ak)gkyl.
Hence H(p;y K TB) = g holds. O

Theorem 92 Let D be a category. Let F: dtCoalg — D be a functor such that for each
homotopy equivalence f in dtCoalg the image F'f is an isomorphism in D.

Then there exists a unique functor F: dtCoalg — D such that F = F o P holds, where
P: dtCoalg — dtCoalg denotes the residue class functor.

dtCoalg - 59

3

dtCoalg
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Proof. Let f: TA— TB and g: TA — T B be two morphisms in dtCoalg that are coderivation
homotopic. Since dtCoalg is defined as the factor category of dtCoalg modulo coderivation
homotopy, it suffices to show that F'f = Fg holds.

By Lemma 91, there is a differential graded coalgebra morphism H: T'A — I X T'B such that
the following diagram commutes.

TB
W

TA —H I@TB ]@TB TB

1 xTB
g TB

By Lemma 90 both pg and p; are homotopy equivalences of differential Z-graded modules.
Thus Lemma 88 implies that po X T'B and p; X T B are homotopy equivalences in dtCoalg.
Applying the functor F' to this diagram we obtain the following commutative diagram in D.

F(TB)
pOIXlTB

4>FI®TB MTB F(TB)

1XITB
Fg F(TB)

By assumption, F(pp X TB) and F(p; X T'B) are isomorphisms. Hence the equation
(F(j ®TB))(F(po B TB)) = idprp) = (F(j RTB)) (F(py RTB))

implies that ) .
(F(po®TB))" = F(jRTB) = (F(p XTB)) .

So we have F'(po XTB) = F(p1 KTB). But then

Ff = (FH)(F(po®TB)) = (FH)(F(py R TB)) = Fg. 0
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Zusammenfassung

Wir konstruieren die Homotopiekategorie von A ,.-Kategorien und untersuchen Homotopiedqui-
valenzen. Wir arbeiten durchgehend iiber einem kommutativen Ring R.
Wir fithren den Formalismus von Graduierungskategorien ein. Damit kénnen wir A-
Kategorien als A-Algebren handhaben.
Wir konstruieren den Bar-Funktor, der eine Aquivalenz zwischen der Kategorie A..-alg der
A o-Algebren und einer vollen Teilkategorie dtCoalg der differentiell graduierten Coalgebren
dgCoalg herstellt.

Bar: Ag-alg == dtCoalg C dgCoalg

Die Kategorie dtCoalg enthélt alle differentiell graduierten Coalgebren, deren unterliegende
graduierte Coalgebra eine Tensorcoalgebra ist. Wir arbeiten durchgehend auf der Coalgebren-
seite des Bar-Funktors, d.h. in dtCoalg.

Zur Konstruktion der Homotopiekategorie fiihren wir verallgemeinerte (f, g)-Coderivationen
ein. Wir konstruieren eine A,.-Kategorie auf diesen Coderivationen.

Wir definieren den Begriff der Coderivationshomotopie und zeigen, dass dies eine Kongruenz
auf dtCoalg definiert. Um Symmetrie und Transitivitat dieser Relation zu zeigen, benotigen
wir gewisse Korrekturterme, die von der A, .-Kategorie auf den Coderivationen produziert
werden.

Wir erhalten die Homotopiekategorie dtCoalg. Mit Hilfe des Bar-Funktors iibersetzt sich
Coderivationshomotopie zu A,.-Homotopie und wir erhalten die Homotopiekategorie A.-alg
der A-Algebren.

Nach der Konstruktion der Homotopiekategorie wollen wir Homotopiedquivalenzen charak-
terisieren. Dazu fithren wir einen Funktor V': dtCoalg — dgMod ein, der die Tensorcoalgebra
TA auf den graduierten Modul A mit eingeschrénktem Differential und einen Morphis-
mus f: TA — TB auf die Einschrankung f |§ schickt. Wir zeigen, dass V einen Funktor
V': dtCoalg — dgMod zwischen den Homotopiekategorien induziert.

Ao-alg —22 dtCoalg —Y— dgMod

| |,

A-alg ——— dtCoalg v dgMod

Als Resultat erhalten wir, dass V' Isomorphismen reflektiert. In anderen Worten, ein Morphis-
mus f: TA — TB ist eine Homotopiedquivalenz genau dann, wenn die Einschriankung f \E
eine Homotopiedquivalenz in dgMod ist. Diese Charakterisierung verallgemeinert ein Resultat
von Prouté.

Wir konstruieren Beispiele, die zeigen, dass V im Allgemeinen weder voll noch treu ist.

SchlieBlich zeigen wir, dass die Homotopiekategorie dtCoalg die Lokalisierung von dtCoalg an

den Homotopiedquivalenzen ist. Dazu zeigen wir, dass zwei coderivationshomotope Morphismen
in dtCoalg in ein gewisses kommutatives Diagramm passen.
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