Einführung in die Algebra 10. Übungsblatt

Aufgabe 1:

Sei R ein noetherscher Ring. Zeige, dass R[X] ebenfalls noethersch ist.

Hinweis: Imitiere den Beweis des Hilbertschen Basissatzes. Betrachte statt des Ideals in R, das von den höchsten Koeffizienten der Polynome im Ideal $\mathfrak{a} \subset R[X]$ erzeugt wird, das Ideal, das von den niedrigsten Koeffizienten der Potenzreihen im Ideal $\mathfrak{a} \subset R[X]$ erzeugt wird.

Aufgabe 2:

Ein direkter Summand eines R-Moduls M ist ein Untermodul N von M, sodass es einen Untermodul N' von M gibt mit $N \oplus N' = M$. Sei jetzt $R = \mathbb{Z}$.

- a) Sei $(m, n) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$. Zeige, dass $\mathbb{Z} \cdot (m, n)$ genau dann ein direkter Summand von \mathbb{Z}^2 ist, wenn ggT(m, n) = 1.
- b) Gib zwei direkte Summanden M_1, M_2 von \mathbb{Z}^2 an, für die $M_1 + M_2$ kein direkter Summand von \mathbb{Z}^2 ist.

Aufgabe 3:

Sei R ein Hauptidealring, $M \simeq R^n$ und N ein R-Untermodul von M vom Rang m. Dann besagt der Elementarteilersatz, dass es $a_1|a_2|\dots|a_m$ in R und eine Basis v_1,\dots,v_n von M gibt, sodass a_1v_1,\dots,a_mv_m eine Basis von N bilden. Zeige, dass die Hauptideale $(a_1),\dots,(a_m)$ durch M und N eindeutig bestimmt sind.

Hinweis: Verwende die in der Vorlesung bewiesene Eindeutigkeitsaussage im Struktursatz über endlich erzeugte R-Moduln.

Aufgabe 4:

Sei R ein Hauptidealring mit Quotientenkörper K. Sei $n \in \mathbb{N}$, und sei M ein endlich erzeugter R-Untermodul von K^n , sodass K^n als Vektorraum von M erzeugt wird. Zeige, dass M ein freier R-Modul vom Rang n ist und dass jede Basis von M als R-Modul auch eine Basis von K^n als K-Vektorraum ist.

Abgabe: Donnerstag, 20. Dezember 2012.