Exercises for **Topology I** Sheet 11

You can obtain up to 0 points per exercise (plus bonus points, where applicable).

Exercise 1. Let $Y \subseteq X$ be a closed subspace such that the inclusion $i: Y \hookrightarrow X$ enjoys the homotopy extension property and admits a retraction (i.e. there exists a continuous map $r: X \to Y$ such that $ri = id_Y$). Construct an isomorphism $H_n(X, A) \cong H_n(Y, A) \oplus H_n(X/Y, A)$ for every coefficient group A and every n > 0. What happens for n = 0?

Exercise 2. The *Klein bottle K* is the space obtained from $[0,1] \times [0,1]$ by dividing out the equivalence relation generated by $(s,0) \sim (s,1)$ and $(1,t) \sim (0,1-t)$ for all $s,t \in [0,1]$.

Describe a CW structure on K and compute $H_*(K,\mathbb{Z})$ and $H_*(K,\mathbb{Z}/2)$ via the corresponding cellular chain complex.

Exercise 3. Let X be a topological space and let $Y \subseteq X$ be a closed subspace. In the lecture we saw that the map

$$H_n(X,Y;A) \to H_n(X/Y,Y/Y;A) \tag{(*)}$$

induced by the collapse map is an isomorphism for every $n \ge 0$ and every abelian group A provided that (X, Y) enjoys the homotopy extension property. In this exercise we will consider an example showing that (*) is not an isomorphism without this assumption in general.

- 1. Let X = [0, 1]. Show that $Y := \{0\} \cup \{n^{-1} : n \ge 1\}$ is a closed subspace of X.
- 2. Construct a surjective homomorphism from $\pi_1(X/Y, [0])$ to $\prod_{\mathbb{N}} \mathbb{Z}$.
- 3. Conclude that $H_1(X/Y, Y/Y; \mathbb{Z})$ is uncountable.
- 4. Show that $H_1(X,Y;\mathbb{Z})$ is free abelian with countable basis, and use this to show that $H_1(X,Y;\mathbb{Z}) \ncong H_1(X/Y,Y/Y;\mathbb{Z})$.

please turn over

Exercise 4. Let $p: E \to X$ be a finite covering map, i.e. a covering map such that all fibers $p^{-1}(x)$ are finite. In this exercise we will define a 'wrong way' transfer map $p': H_n(X, A) \to H_n(E, A)$ on homology with coefficients in any abelian group A.

1. Let $\sigma: \nabla^n \to X$ be continuous. We define $p!(\sigma) \coloneqq \sum_{\bar{\sigma}: \nabla^n \to E} \bar{\sigma}$ where the sum runs over all lifts of σ , i.e. all $\bar{\sigma}: \nabla^n \to E$ with $p \circ \bar{\sigma} = \sigma$.

Extend this assignment to a chain map $p': C(\mathcal{S}(X), A) \to C(\mathcal{S}(E), A)$ natural in the group A. We will denote the associated map $H_n(X, A) \to H_n(E, A)$ on homology groups again by p'.

- 2. Let $q: X \to Y$ be another finite covering. Show that $qp: E \to Y$ is again a finite covering and that $(qp)! = p! \circ q!$ as maps $H_n(Y, A) \to H_n(E, A)$.
- 3. Assume now that X is connected, so that the cardinality $n \coloneqq |p^{-1}(x)|$ of the fiber of $p: E \to X$ is independent of the choice of $x \in X$. Show that the composite

$$H_n(X,A) \xrightarrow{p^!} H_n(E,A) \xrightarrow{p_*} H_n(X,A)$$

of the transfer map with the map induced by the usual functoriality of homology is given by multiplication by n.

4. Assume now that n = 2. Show that we have a short exact sequence of chain complexes

$$0 \longrightarrow C(\mathcal{S}(X), \mathbb{Z}/2) \xrightarrow{p^{*}} C(\mathcal{S}(E), \mathbb{Z}/2) \xrightarrow{p_{*}} C(\mathcal{S}(X), \mathbb{Z}/2) \longrightarrow 0$$

*5. (0 bonus points) Let $m \ge 1$ and let $f: S^m \to S^m$ be an odd map (i.e. f(-x) = -f(x) for all $x \in S^m$). Show that f has odd degree.

Hint. Specialize the previous exercise to the 2-sheeted covering $S^m \to \mathbb{R}P^m$ and consider the associated long exact sequence in homology.