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Classical category theory is based on set theory, meaning that a 1-category has a collection
of objects, a set of morphisms between each object, a choice of identity morphisms, and an
associative and unital composition law. In higher category theory, we want to build some
kind of category which has built homotopy theory into its foundations. An 8-category is then
a collection of objects, a space of morphisms between every pair of objects with a choice of
identity morphisms, and a composition law which is only unital and associative up to higher
homotopy. In particular, we do not ask that h ˝ pg ˝ fq is equal to ph ˝ gq ˝ f inside the
associated mapping space, but that there is a choice of homotopy between them, so a path
in this mapping space. The induced homotopies between 3-fold compositions then need to be
glued together when iterated for 4-fold composition with 2-homotopies, so surfaces between
different paths in this mapping space, and so on with n-homotopies for all n ě 1. This is a lot
more data than in classical category theory, but it is necessary to set up a general homotopy
coherent category theory in order to make and prove statements in modern homotopy theory.

One approach to capture all of this data is to define 8-categories inside simplicial sets, as
pioneered by Joyal [Joy02] and Lurie [Lur09]. We will mostly follow the textbook of Land
[Lan21]. The goal is to work through the basics of 8-categories, from the fundamental defini-
tions, to the Yoneda lemma and limits and colimits.

Each talk should be 90 minutes long, accounting for questions and comments, and so it is up
to each presenter to chose exactly what should be presented from topic. We encourage you to
organise a meeting with Jack Davies before your talk.

(08.04.2025) Simplicial sets as a model for topological spaces Define simplicial sets
as well as the singular set and geometric realisation functor. Show these two functors are
adjoint. Given some examples of simplicial sets. Define homotopy groups of simplicial sets.
Show that the singular set-geometric realisation adjunction induces units and counits which
are weak equivalences on nice objects. See [GJ99, Qui67].
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(15.04.2025) From 1-categories to 8-categories Construct the nerve functor N : Cat Ñ

sSet, describe its essential image, as well as its adjoint h : sSet Ñ Cat. Define 8-categories,
Kan complexes, objects, morphisms, 8-groupoid cores, subcategories, functors, and natural
transformations. See [Lan21, 1.2.1-29 & 1.2.75-80].

(22.04.2025) From simplicial categories to 8-categories Define simplicial (and topo-
logical) categories and discuss how they model 8-categories. Reconstruct the nerve functor N
as being corepresented by the cosimplicial category r‚s : ∆ Ñ Cat. Define the simplicial cate-
gories Cr∆ns and define the simplicial nerve as the functor into simplicial sets corepresented
by these simplicial categories. Define the 8-category of spaces. See [Lan21, 1.2.30-71].

(29.04.2025) Anodyne maps, fibrations, and the 8-category of functors Define
Kan, left, right, and inner fibrations and the associated anodyne maps. Define saturated
closures and prove [Lan21, Corollary 1.3.16] that all anodyne maps are the saturated closures
of the associated horn inclusions. Prove either [Lan21, Lemma 1.3.34] or one of the variants
which further classify various anodyne morphisms in terms of saturated closures. Use this to
prove [Lan21, Theorem 1.3.37 & Corollary 1.3.38] that gives a definition of the 8-category of
functors. Define mapping spaces and prove they are spaces [Lan21, Proposition 1.3.48].

(06.05.2025) Joins, slices, and Joyal’s theorem Introduce joins of simplicial sets, show
that the join of two 8-categories is an 8-category, and use joins to define slice 8-categories.
Prove [Lan21, Theorem 1.4.23] which in turn follows from [Lan21, Lemma 1.4.22]. Use these
results to prove Joyal’s theorem [Lan21, Theorem 2.1.8 & Corollary 2.1.12] that 8-groupoids
are Kan complexes. Define the 8-category of 8-categories.

(20.05.2025) Equivalences of 8-categories Define what it means for a functor of 8-
categories to be fully faithful or essentially surjective and prove [Lan21, Proposition 2.3.5] that
Joyal equivalences are fully faithful and essentially surjective. Prove [Lan21, Theorem 2.3.20]
that a fully faithful and essentially surjective functor of 8-categories is a Joyal equivalence.

(27.05.2025) Localisations of 8-categories Introduce (Dwyer–Kan) localisations of 8-
categories and prove their uniqueness. Prove the existence of localisations [Lan21, Lemma
2.4.5 & Proposition 2.4.8]. Prove [Lan21, Lemma 2.4.9] and remark upon [Lan21, Theorem
2.4.10 & Corollary 3.2.26].

(03.06.2025) More on mapping spaces Define the fat join and fat slice 8-categories.
Prove [Lan21, Proposition 2.5.27] that the canonical map from the join to the fat join is a
Joyal equivalence. Define the right and left mapping spaces and prove [Lan21, Lemma 2.5.30
& Corollary 2.5.31]. Deduce that the left and right mapping spaces agree with the mapping
spaces previously seen [Lan21, Corollary 2.5.34]. Finish by proving that the functor from
spaces to 8-categories is fully faithful [Lan21, Corollary 2.5.38].
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(01.07.2025) (co)Cartesian and fibrations and straightening–unstraightening De-
fine (co)Cartesian fibrations and characterise them as in [Lan21, Lemma 3.1.2]. Prove [Lan21,
Corollary 3.1.13]. Define (co)Cartesian fibrations, prove [Lan21, Proposition 3.1.23], and use
this to prove that a Cartesian fibration is a right fibration if and only if it is conservative
[Lan21, Corollary 3.1.25]. Discuss [Lan21, Theorem 3.3.10], some elements of its proof, and
use it to prove [Lan21, Theorem 3.3.16 & Theorem 3.3.17]. [Lan21, §3.1-3].

(08.07.2025) The Yoneda lemma Define the twisted arrow 8-category and prove [Lan21,
Proposition 4.2.4] to see that it actually defines an 8-category. Use this to define the mapping
space functor which is then adjoint to the Yoneda embedding (alternatively, give a construction
of the Yoneda embedding as done in [Lan21, Remark 4.2.6]). Prove the Yoneda lemma [Lan21,
Proposition 4.2.10] and that the Yoneda embedding is fully faithful [Lan21, Proposition 4.2.11].

(15.07.2025) Limits and colimits Define terminal and initial objects in an 8-category
and prove [Lan21, Proposition 4.1.3]. Define colimits and colimit cones and prove [Lan21,
Theorem 4.3.11]. Use this to conclude [Lan21, Lemma 4.3.13]. Define what it means for
a functor to spaces to be representable and prove [Lan21, Proposition 4.3.19]. Discuss the
examples of coproducts and pushouts, and discuss [Lan21, Theorem 4.3.28] that an 8-category
with coproducts and pushouts has all small colimits. Prove [Lan21, Theorem 4.3.37] that the
8-categories of spaces and 8-categories have all small limits and colimits.
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