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Introduction

The purpose of my research is to explore

the bounded derived categories Db(X) of di-

agram categories over finite posets X.

Applications and Related areas:

1. (Geometry) Computation of the coho-

mology of subspace arrangements [3].

2. (Combinatorics) Study of h-vectors of

convex polytopes [4].

3. (String theory) Homological mirror sym-

metry [5].

4. (Algebraic geometry) Study of derived

categories of coherent sheaves over alge-

braic varieties [2];

Non-commutative geometry.
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Posets

A poset (X,≤) is a set X with a binary rela-

tion ≤ satisfying

(reflexive) x ≤ x

(anti-symmetric) x ≤ y, y ≤ x ⇒ x = y

(transitive) x ≤ y, y ≤ z ⇒ x ≤ z

Examples:

1. The set of natural numbers with the usual

order: 0 < 1 < 2 < 3 < . . . .

2. The set of integers with the division re-

lation: a ≤ b if a divides b.

3. The set P(Y ) of all subsets of a given

set Y with the inclusion relation: S ≤ T

if S ⊆ T .

φ ≤ {a} ≤ {a, b} , φ ≤ {b} ≤ {a, b}
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Hasse Diagrams

Given a finite poset (X,≤), its Hasse diagram
is a directed graph;

• Its vertices are the elements x ∈ X.

• Its edges x → y are pairs x < y such that
no z satisfies x < z < y.

Examples:

1. The natural numbers:

0 → 1 → 2 → 3 → . . .

2. P({a, b, c}):

φ

xxpppppppppppppp

�� &&MMMMMMMMMMMMMMM

{a}
�� &&MMMMMMMMMMM

{b}
qqqqqq

xxqqq
qq

MMMMMM

&&MM
MMM

{c}
xxqqqqqqqqqqq

��

{a, b}
&&MMMMMMMMMM
{a, c}

��

{b, c}
xxqqqqqqqqqq

{a, b, c}
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Diagram Categories

Let (X,≤) be a finite poset (as a Hasse dia-
gram) and let k be a field.

The diagram category over X consists of ob-
jects and morphisms.

An object consists of:

• Finite dimensional vector space Vx for each
vertex x ∈ X.

• Linear transformation Txy : Vx → Vy for
each edge x → y.

We require that the composition of the linear
transformations along a path depends only
on its starting and ending points.

Example. P({a, b}). An object is a diagram
below with T24T12 = T34T13.

V1
T12
}}||

||
||

|| T13
!!B

BB
BB

BB
B

V2

T24 !!B
BB

BB
BB

B
V3

T34}}||
||

||
||

V4

φ

zzuuuuuuuuuuu

$$I
IIIIIIIIII

{a}
$$I

IIIIIIII
{b}

zzvvvvvvvvv

{a, b}
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A morphism between two objects {Vx, Txy},
{V ′

x, T ′xy} consists of linear transformations

fx : Vx → V ′
x

for each vertex x ∈ X, such that for any edge

x → y,

fyTxy = T ′xyfx

Example. P({a, b}). A morphism is a tu-

ple (f1, f2, f3, f4) such that all squares in the

following diagram are commutative.

V ′
1

T ′12����
��

��
��

��
��

�� T ′13

��?
??

??
??

??
??

??
?

V1

T12

����
��

��
��

��
��

��
�� T13

��?
??

??
??

??
??

??
??

?

f1

44jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj V ′
2

T ′24

��?
??

??
??

??
??

??
?

V ′
3

T ′34����
��

��
��

��
��

��

V2

T24
  @

@@
@@

@@
@@

@@
@@

@@

f2

44jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj V3
T34

~~~~
~~

~~
~~

~~
~~

~~
~

f3

44jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj V ′
4

V4

f4

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Topology and Algebra

Define a topology on X by:

U ⊆ X is open if x ∈ U , y ≥ x ⇒ y ∈ U

The incidence algebra AX of X is a matrix
subalgebra generated by Exy for x ≤ y.

Example. P({a, b}). The incidence algebra
is: (∗ can take any value)

∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗


The open sets are:

φ, {4}, {2,4}, {3,4}, {2,3,4}, {1,2,3,4}

Three equivalent notions:

Diagrams on X (finite poset)

Sheaves on X (topology as above)

(Right) finite dimensional modules over AX
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The Derived Category

A complex of diagrams is a sequence of dia-

grams Fn and morphisms dn : Fn → Fn+1

· · · → F−1
d−1−−→ F0

d0−→ F1
d1−→ F2 → . . .

such that dn+1dn = 0 for all n.

A complex is bounded if Fn = 0 for all but

finite number of n.

Complexes also form a category.

The derived category is obtained by taking

complexes modulo a suitable equivalence re-

lation (quasi-isomorphism).

We will focus on the bounded derived cate-

gory corresponding to bounded complexes of

diagrams on X, and denote it by Db(X).
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The Problem

Two posets X, Y are equivalent (X ∼ Y ) if

Db(X) ' Db(Y )

Problem. When X ∼ Y for two posets X, Y ?

No known algorithm that decides if X ∼ Y ;

however one can use:

Invariants of the derived category;

If Db(X) ' Db(Y ) then X and Y must have

the same invariants.

Examples of invariants are:

• The number of points of X.

• The Euler bilinear form on X.

Constructions

Start with some “nice” X and get many Y -s

with X ∼ Y .
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Known Constructions

BGP Reflection [1]

When X is a tree and s ∈ X is a source (or

a sink), invert all arrows from (to) s and get

a new tree X ′ with X ′ ∼ X.

Example.

•
��•
��

•
~~~~

~~
~~

~

•

and •
��~~~~

~~
~~

~
•

~~~~
~~

~~
~

• •

are equivalent.

D4 and the square

•
��•

~~~~
~~

~~
~

  @
@@

@@
@@

• •

and •
~~~~

~~
~~

~

  @
@@

@@
@@

•
  @

@@
@@

@@
•

~~~~
~~

~~
~

•
are equivalent.
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New Construction

A few definitions

Given a poset S, denote by Sop the opposite

poset, with Sop = S and s ≤ s′ in Sop if and

only if s ≥ s′ in S.

A poset S is called a bipartite graph if we

can partition S = S0
∐

S1 with S0, S1 discrete

with the property that s < s′ in S implies

s ∈ S0, s′ ∈ S1.

Let X = {Xs}s∈S be a collection of posets

indexed by the elements of another poset S.

The lexicographic sum of the Xs along S,

denoted ⊕SX, is a new poset (X,≤);

Its elements are X =
∐

s∈S Xs, with the order

x ≤ y for x ∈ Xs, y ∈ Xt if either s < t (in S)

or s = t and x ≤ y (in Xs).
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New Construction – Theorem

Theorem.

If S is a bipartite graph and X = {Xs}s∈S is

a collection of posets, then

⊕SX ∼ ⊕SopX

This theorem generalizes some of the known

constructions.

Example.

S = •
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Corollary. X ⊕ Y ∼ Y ⊕X
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Idea of the Proof

Let Y ⊂ X be closed, U = X \ Y . Denote by
i : Y → X, j : U → X the inclusions.

Consider the truncations P̃y = i∗i−1Py, Ĩu =
j!j

−1Iu for y ∈ Y , u ∈ U .

Example. X = Y ∪ U .
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Py P̃y

Then {P̃y}y∈Y ∪ {Ĩu[1]}u∈U is a strongly ex-
ceptional collection in Db(X), hence

Db(X) ' Db(A)

where A = EndDb(X)((⊕Y P̃y)⊕ (⊕U Ĩu)[1]).

Choose Y such that A is an incidence algebra,
and then identify its underlying poset.
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A Generalization?

Question. Is the theorem also true for posets
S with 3 layers?

The simplest case to consider is the ordinal
sum of three posets: X ⊕ Y ⊕ Z.

Note that

X ⊕ Y ⊕ Z ∼ Y ⊕ Z ⊕X ∼ Z ⊕X ⊕ Y

Y ⊕X ⊕ Z ∼ X ⊕ Z ⊕ Y ∼ Z ⊕ Y ⊕X

(why?)

Counterexample.
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X ⊕ Y ⊕ Z Y ⊕X ⊕ Z

are not equivalent!
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