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Introduction

The purpose of my research is to explore
the bounded derived categories D?(X) of di-
agram categories over finite posets X.

Applications and Related areas:

1. (Geometry) Computation of the coho-
mology of subspace arrangements [3].

2. (Combinatorics) Study of h-vectors of
convex polytopes [4].

3. (String theory) Homological mirror sym-
metry [5].

4. (Algebraic geometry) Study of derived
categories of coherent sheaves over alge-
braic varieties [2];

Non-commutative geometry.
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Posets

A poset (X,<) is a set X with a binary rela-
tion < satisfying

(reflexive) r <

(anti-symmetric) x<y,y<z=>z=y

(transitive) r<yy<z=zx<z
Examples:

1. Theset of natural numbers with the usual
order: 0<1<2<3<....

2. The set of integers with the division re-
lation: a < b if a divides b.

3. The set P(Y) of all subsets of a given
set Y with the inclusion relation: § < T
if SCT.

¢ <{aj <{a,b} , ¢ <{b}<{a,b}
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Hasse Diagrams

Given a finite poset (X, <), its Hasse diagram
IS a directed graph;

e Its vertices are the elements x € X.

e Its edges x — y are pairs x < y such that
Nno z satisfies x < z < y.

Examples:

1. The natural numbers:
0O—1—2 3

2. P({a,b,c}):
¢

PN

|
{a} {b} {c}
| > >
{a,b} {a,c} {b, c}

{a,b,c}
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Diagram Categories

Let (X, <) be a finite poset (as a Hasse dia-
gram) and let k be a field.

The diagram category over X consists of ob-
jects and morphisms.

An object consists of:

e Finite dimensional vector space V,. for each
vertex z € X.

e Linear transformation Tzy : Vi — Vi for
each edge =z — y.

We require that the composition of the linear
transformations along a path depends only
on its starting and ending points.

Example. P({a,b}). An object is a diagram
below with ThoaT1o = 13471 3.

@
/ \ PN
{a} {b}
\ / \{ b}/
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A morphism between two objects {Vi, Ty},
{VZ, Ty, } consists of linear transformations

for each vertex x € X, such that for any edge

r — Y,

JyTey = T:éyf x

Example. P({a,b}). A morphism is a tu-
ple (f1, f2, f3, fa) such that all squares in the
following diagram are commutative.

SN

V1 vy %

VQMJE ; vi/
P
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Topology and Algebra

Define a topology on X by:
UCXisopenifzeelU,y>x=yeclU

The incidence algebra Ax of X is a matrix
subalgebra generated by Ezy for z < y.

Example. P({a,b}). The incidence algebra
is: (x can take any value)

O % O *
* X% X ¥

O O O %
O O * *

The open sets are:
b, {4},{2,4},{3,4},{2,3,4},{1,2,3,4}
Three equivalent notions:
Diagrams on X (finite poset)
Sheaves on X (topology as above)

(Right) finite dimensional modules over Ax
5
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The Derived Category

A complex of diagrams is a sequence of dia-
grams Fp and morphisms dp @ Fn — Fp41

1 d d
-— F_q —>]:o—o>]:1 L Fo— ...

such that d,,y1dn = 0 for all n.

A complex is bounded if F, = 0O for all but
finite number of n.

Complexes also form a category.

The derived category is obtained by taking
complexes modulo a suitable equivalence re-
lation (quasi-isomorphism).

We will focus on the bounded derived cate-
gory corresponding to bounded complexes of
diagrams on X, and denote it by Db(X).
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The Problem

Two posets X,Y are equivalent (X ~Y) if
DY (X) ~ DV(Y)

Problem. When X ~ Y for two posets X,Y?

No known algorithm that decides if X ~ Y;
however one can use:

Invariants of the derived category;

If DY(X) ~ DP(Y) then X and Y must have
the same invariants.

Examples of invariants are:

e [ he number of points of X.

e | he Euler bilinear form on X.

Constructions
Start with some “nice” X and get many Y-s
with X ~ Y.
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Known Constructions

BGP Reflection [1]

When X is a tree and s € X is a source (or
a sink), invert all arrows from (to) s and get
a new tree X’ with X’ ~ X.

Example.

|
|

are equivalent.

D, and the square

° and °

|
./ \.

are equivalent.

10
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New Construction

A few definitions
Given a poset S, denote by S the opposite
poset, with S°? = S and s < s’ in S°P if and
only if s > s’ in S.

A poset S is called a bipartite graph if we
can partition S = Sp [ 57 with 5g, S discrete
with the property that s < s’ in S implies
s € Sp, s’ €85].

Let X = {Xs}scg be a collection of posets
indexed by the elements of another poset S.

The lexicographic sum of the Xs along S,
denoted @4¢X, is a new poset (X, <);

Its elements are X = [[;cg9 Xs, With the order
x <y forxe Xg, ye Xy if either s <t (in S)
or s=tand z <y (in Xg).

11
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New Construction — T heorem

T heorem.
If S is a bipartite graph and X = {Xs}scg IS
a collection of posets, then

PgX ~ PgopX

This theorem generalizes some of the known
constructions.

Corollary. XY ~Y X
12
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Idea of the Proof

Let Y C X be closed, U = X \Y. Denote by
1Y —- X, 5:U — X the inclusions.

Consider the truncations P, = i.i~1P,, I, =
i I, foryeY, ueU.

Example. X =Y UU.

/7

BN I

O k kE k O O O O O
N X N X
kE k k 0 O 0

Py Py

Then {Py},cy U {Iu[l]}ueU is a strongly ex-
ceptional collection in D?(X), hence

DV(X) ~ Db (A)
where A = Endpy oy ((@y Fy) ® (©ylu)[1D).

Choose Y such that A is an incidence algebra,
and then identify its underlying poset.

13
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A Generalization?

Question. Is the theorem also true for posets
S with 3 layers?

The simplest case to consider is the ordinal
sum of three posets: X @Y @ ~Z.

Note that

XBPYPLZ~YDPLZDODX ~LPDXDY
YOXPLZ~XDZBY ~ZDY DX

(why?)

Counterexample.

o
Xoy ez "o X @7

are not equivalent!
14
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