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Constructions of derived equivalences of finite posets

Notions

X – Poset (finite partially ordered set).

The Hasse diagram GX of X is a directed

acyclic graph.

• Vertices: the elements x ∈ X.

• Edges x → y for pairs x < y with no z

such that x < z < y.

X carries a natural topology :

U ⊆ X is open if x ∈ U , y ≥ x ⇒ y ∈ U

We get a finite T0 topological space.

Equivalence of notions:

Posets ⇔ Finite T0 spaces

For a field k, the incidence algebra kX of X is

a matrix subalgebra spanned by exy for x ≤ y.
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Constructions of derived equivalences of finite posets

Example

Poset X = {1,2,3,4} with

1 < 2, 1 < 3, 1 < 4, 2 < 3, 2 < 4, 3 < 4

Hasse diagram
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Topology

The open sets are:

φ, {4}, {2,4}, {3,4}, {2,3,4}, {1,2,3,4}

Incidence algebra (∗ can take any value)
∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗


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Constructions of derived equivalences of finite posets

Three Equivalent Categories

A – Abelian category.

• Sheaves over X with values in A:

U 7→ F(U) U ⊆ X open

with restriction maps F(U) → F(V ) (U ⊇ V ),

pre-sheaf and gluing conditions.

• Commutative diagrams of shape GX over A,

or functors X → A:

Fx
rxy−−→ Fy x → y

with rxy ∈ homA(Fx, Fy) and commutativity

relations.

Fix a field k, and specialize:

A – finite dimensional vector spaces over k

• Finitely generated right modules over the

incidence algebra of X over k.
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Constructions of derived equivalences of finite posets

The Problem

Db(X) – Bounded derived category of
sheaves / diagrams / modules (over X).

Two posets X, Y are equivalent (X ∼ Y ) if

Db(X) ' Db(Y )

Problem. When X ∼ Y for two posets X, Y ?

No known algorithm that decides if X ∼ Y ;
however one can use:

• Invariants of the derived category;
If Db(X) ' Db(Y ) then X and Y must have
the same invariants.

Examples of invariants are:

• The number of points of X.

• The Euler bilinear form on X.

• Constructions
Start with some “nice” X and get many Y -s
with X ∼ Y .
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Constructions of derived equivalences of finite posets

Known Constructions

• BGP Reflection

When X is a tree and s ∈ X is a source (or

a sink), invert all arrows from (to) s and get

a new tree X ′ with X ′ ∼ X.

Example.
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Constructions of derived equivalences of finite posets

New Construction

A few definitions

Given a poset S, denote by Sop the opposite

poset, with Sop = S and s ≤ s′ in Sop if and

only if s ≥ s′ in S.

A poset S is called a bipartite graph if we can

partition S = S0qS1 with S0, S1 discrete with

the property that s < s′ in S implies s ∈ S0,

s′ ∈ S1.

Let X = {Xs}s∈S be a collection of posets

indexed by the elements of another poset S.

The lexicographic sum of the Xs along S,

denoted ⊕SX, is a new poset (X,≤);

Its elements are X =
∐

s∈S Xs, with the order

x ≤ y for x ∈ Xs, y ∈ Xt if either s < t (in S)

or s = t and x ≤ y (in Xs).
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Constructions of derived equivalences of finite posets

New Construction – Theorem

Theorem.
If S is a bipartite graph and X = {Xs}s∈S is
a collection of posets, then

⊕SX ∼ ⊕SopX

Example.
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Constructions of derived equivalences of finite posets

Idea of the Proof

Let Y ⊂ X be closed, U = X \ Y . Denote by

i : Y → X, j : U → X the inclusions.

Consider the truncations P̃y = i∗i−1Py, Ĩu =

j!j
−1Iu for y ∈ Y , u ∈ U .

Example. X = Y ∪ U .
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Then {P̃y}y∈Y ∪ {Ĩu[1]}u∈U is a strongly ex-

ceptional collection in Db(X), hence

Db(X) ' Db(AY )

where AY = EndDb(X)((⊕Y P̃y)⊕ (⊕U Ĩu)[1]).
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Constructions of derived equivalences of finite posets

Proof – continued

k-basis of the algebra AY{
eyy′ : y ≤ y′

}
∪

{
eu′u : u′ ≤ u

}
∪ {euy : y < u}

where y, y′ ∈ Y , u′, u ∈ U .

Multiplication formulas

eyy′ey′y′′ = eyy′′ , eu′′u′eu′u = eu′′u

euyeyy′ = euy′ if y′ < u and 0 otherwise.

eu′ueuy = eu′y if y < u′ and 0 otherwise.

Define a binary relation ≤′ on X ′ = U q Y by

u′ ≤′ u ⇔ u′ ≤ u y ≤′ y′ ⇔ y ≤ y′

u <′ y ⇔ y < u

≤′ is a partial order if and only if

y ≤ y′ ∈ Y , u′ ≤ u ∈ U , y < u ⇒ y′ < u′

In this case, the algebra AY is isomorphic to

the incidence algebra of (X ′,≤′).
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Constructions of derived equivalences of finite posets

Ordinal Sums

Corollary. X ⊕ Y ∼ Y ⊕X.

Proposition. Assume that for any X, Y, Z,

(?) X ⊕ Y ⊕ Z ∼ Y ⊕X ⊕ Z

Then, for all X1, . . . , Xn and π ∈ Sn,

Xπ(1) ⊕ · · · ⊕Xπ(n) ∼ X1 ⊕ · · · ⊕Xn

Counterexample to (?).
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X ⊕ Y ⊕ Z Y ⊕X ⊕ Z

are not equivalent!
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