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Posets, diagrams and sheaves
X — poset (finite partially ordered set)
A — abelian category

AX — the category of diagrams over X with values in A, or functors
F: X — A, consisting of:

e An object F, of A for each z € X.
e A morphism r,., € Hom 4(Fz, F,/) for each = < z'.

such that r » = rnr, . for all z < 2’ <z’ (commutativity).
Natural topology on X: U CX isopenifzecU,xz<z' =2 €U

Diagrams can be identified with sheaves over X with values in A.
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Posets, diagrams and sheaves — Example
Let X ={1,2,3,4} with 1 <2,1<3,1<4,2<4,3<4.
A diagram over X is shown on the right:
1 T
2/ \3 1/ \33
N, rz\ /34

The open sets are

»,{4},{2,4},{3,4},{2,3,4},{1,2,3,4}.
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Derived categories

B — abelian category, Cb(B) — the category of bounded complexes
K*=. . & 14 g0d g1 d
with K* € B, d2 =0 and K =0 for |i| > 0.

A morphism f : K® — L® is a quasi-isomorphism if
H'f : H'K® — H'L®
are isomorphisms for all = € Z.
The bounded derived category DP(B) is obtained from C?(B) by local-

ization with respect to the quasi-isomorphisms (that is, we formally
invert all quasi-isomorphisms).
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Universal derived equivalence

Two posets X and Y are universally derived equivalent (X ~Y) if
DY (AX) ~ DP(AY)

for any abelian category A.

Fix a field k, and specialize:
mod k — the category of finite dimensional vector spaces over k.

(mod k)X can be identified with the category of finitely generated
right modules over the incidence algebra of X over k.

X and Y are derived equivalent (X ~Y) if
D’(mod kX) ~ D’(mod kY)
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Comments on derived equivalence

No known algorithm that decides if X ~Y (or X ~Y).
However, one can use:

e Invariants of the derived category;
If X ~Y then X and Y must have the same invariants.

Examples of invariants are:
e T he number of points of X.

e [ he Euler bilinear form on X, closely related to the Mobius func-
tion of X.

e Constructions
Start with some “nice” X and get many Y-s with X ~ Y.
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Known constructions

e BGP Reflection
When X is a tree and s € X is a source (or a sink), invert all arrows
from (to) s and get a new tree X’ with X' ~ X.

Example.

o — — @ o — — @ o — — 0

e The square and D4

and O e are equivalent.

N N\

N\ |
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Constructions of derived equivalent posets

Common theme: structured reversal of order relations.

e Generalized reflections (universal derived equivalences)
— Flip-Flops, with application to posets of cluster tilting objects
— Generalized BGP reflections
— Hybrid construction

e Mirroring with respect to a bipartite structure

— Mates of triangular matrix algebras
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Flip-Flops
Let (X, <y), be posets, f: X — Y order-preserving.

Define two partial orders gi, gf on X U Y as follows:
e Keep the original partial orders inside X and
e Add the relations
v <oy @) <y
< ve= <y f@)
forxe X, ye

Theorem. (X U ,gi) Lxuy, <),
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Flip-Flop — Example

Sr— 1 O 2 11— 10 12— 06
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Application — Posets of cluster tilting objects

(Q — quiver without oriented cycles, k£ — field

TQ — poset of cluster tilting objects in the cluster category of kQ
[BMRRT, CCS, FZ]

When @ is a Dynkin diagram of type A, D, or E, the poset TQ IS kKnown
as a Cambrian lattice [Reading], which is a quotient of the weak order
on the corresponding Coxeter group.

In type A with the linear orientation, we get the Tamari lattices.
T heir Hasse diagrams are the 1-skeletons of polytopes known as the

Stasheff Associhedra.
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Tamari Lattices for A1 and A,

To

To—e

(ab)c — a(be)

((ab)c)d

(a(bIC){ \

(ab)(cd)
a((bc)d)

N

a(b(cd))
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Tamari Lattice for Aj

To—0—e (((ab)c)d)e

\
((ab)(cd))e

((a(be))d)e

(a((bc)d))e
((ab)c)(de) (ab)((cd)e) (a(b(cd)))e

//l//

a(((be)d)e) (a(be))(de) (ab)(c(de))
a((b(cd))e)

a((bc)(de))

\
a(b(c(de)))

a(b((cd)e))
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Flip-flops on posets of cluster tilting objects
(Q — quiver without oriented cycles.
x — a sink in Q.
Q' — the BGP reflection with respect to z.
Theorem. 75 and TQ, are related via a flip-flop.

TQ ~ (Téj L TQ \ 75, Si) TQ/ ~ (Tég/ L TQ/ \ 75/’ SJ:/)

Corollary. If Q1 ~ Q2 then T, ~ T,
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Generalized BGP reflections

Let be poset, Yy C a subset with the property

[y, 1Ny, 1=¢=1[,yIn[,y] forall y#y in Yy

Define two partial orders g’f, §1_/0 on {«x}U Y as follows:
e Keep the original partial order inside
e Add the relations
« <10y == Jyg € Yp with yo <
Yoy Jyg € Yp with v < yg
for ¢ €
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Generalized BGP reflections — continued

The vertex % is a source in the Hasse diagram of gf?, with arrows
ending at the vertices of Y.

The Hasse diagram of gi_/o IS obtained by reverting the orientations
of the arrows from %, making it into a sink.

Theorem. ({*}U <oy & ({+} U <Xy,

Example.

o x——@ @ ~%x~—@

RN RN
NS NS
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Hybrid construction — setup

(X, <x), (V.<y) — posets, {Yz}rcx — collection of subsets Y; C V,
with the properties:
e For all x € X,
[y, 1N, 1=0¢=1[,yIn[,y] forally#y inY;

e For all </, there exists an isomorphism ¢, ./ : Yz — Y,/ with

Y <y 5 /(y) for all y € Yz

It follows that {Y:},.cx is a local system of subsets of }':

Pra" = P! 2"Px.z! for all = < z’ < z"

’
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Hybrid construction — result

Define two partial orders on <4, <_ on X U as follows:
e Keep the original partial orders inside X and
e Add the relations
r <4 y<= Jyr € Yy with yz <y
<_x <= dyz € Yz With v <y yz
forx e X, y €

Theorem. (XU VY, < )~ (XUY,<0).

Remarks.
e When X = {x}, we recover the generalized BGP reflection.
e When Y, = {x} for all z € X, we recover the flip-flop.
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Mirroring with respect to a bipartite structure
Let S be bipartite. (S = SgU Sy with s < s’ = s Sy and s’ € S7)
Let X = {Xs}scg be a collection of posets indexed by S.

Define two partial orders <, and <_ on [J,c5 Xs as follows:
e Keep the original partial order inside each Xj;.
e Add the relations

373<_|_ <:\/>S<t<:> <_a'/'3
fOI’QSSEXS, &

Theorem. (Uscs Xs, <4) ~ (Uses Xs, <-).
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Bipartite structure — example

S— e o
NI\
AN K
(UseSX37§—|—) o e o o o (lsesXs, <)

] <]
g /

.
X{%\\ AN
/

N EX
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Mates of triangular matrix algebras

Let £ be a field, R and S k-algebras and pMg bimodule. Consider the
triangular matrix algebras

(R M ~ (S DM
A_<O S) and /\—<O R)

where DM = Hom (M, k).

Theorem. D°(ModA) ~ D°(Mod A), under the assumptions:
° dimkM < o0

e dim, S < oo, gl.dimS§ < oo
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