Generalized reflections and derived equivalences of posets

Sefi Ladkani

Einstein Institute of Mathematics
The Hebrew University of Jerusalem

http://www.ma.huji.ac.il/~sefil/

Posets, diagrams and sheaves

X - poset (finite partially ordered set)

A – abelian category

 \mathcal{A}^X — the category of *diagrams* over X with values in \mathcal{A} , or *functors* $F: X \to \mathcal{A}$, consisting of:

- An object F_x of \mathcal{A} for each $x \in X$.
- A morphism $r_{xx'} \in \text{Hom}_{\mathcal{A}}(F_x, F_{x'})$ for each x < x'.

such that $r_{xx''} = r_{x'x''}r_{xx'}$ for all x < x' < x'' (commutativity).

Natural *topology* on X: $U \subseteq X$ is open if $x \in U$, $x \le x' \Rightarrow x' \in U$

Diagrams can be identified with *sheaves* over X with values in A.

Posets, diagrams and sheaves – Example

Let $X = \{1, 2, 3, 4\}$ with 1 < 2, 1 < 3, 1 < 4, 2 < 4, 3 < 4.

A *diagram* over X is shown on the right:

$$r_{24}r_{12} = r_{14} = r_{34}r_{13}$$

The open sets are

$$\phi$$
, {4}, {2,4}, {3,4}, {2,3,4}, {1,2,3,4}.

Derived categories

 ${\cal B}$ – abelian category, ${\cal C}^b({\cal B})$ – the category of bounded complexes

$$K^{\bullet} = \dots \xrightarrow{d} K^{-1} \xrightarrow{d} K^{0} \xrightarrow{d} K^{1} \xrightarrow{d} \dots$$

with $K^i \in \mathcal{B}$, $d^2 = 0$ and $K^i = 0$ for $|i| \gg 0$.

A morphism $f: K^{\bullet} \to L^{\bullet}$ is a *quasi-isomorphism* if

$$H^i f: H^i K^{\bullet} \to H^i L^{\bullet}$$

are isomorphisms for all $i \in \mathbb{Z}$.

The bounded derived category $\mathcal{D}^b(\mathcal{B})$ is obtained from $\mathcal{C}^b(\mathcal{B})$ by localization with respect to the quasi-isomorphisms (that is, we formally invert all quasi-isomorphisms).

Universal derived equivalence

Two posets X and Y are universally derived equivalent $(X \overset{u}{\sim} Y)$ if $\mathcal{D}^b(\mathcal{A}^X) \simeq \mathcal{D}^b(\mathcal{A}^Y)$

for any abelian category A.

Fix a field k, and specialize: mod k — the category of finite dimensional vector spaces over k.

 $(\bmod k)^X$ can be identified with the category of finitely generated right modules over the incidence algebra of X over k.

X and Y are *derived equivalent* $(X \sim Y)$ if $\mathcal{D}^b(\operatorname{mod} kX) \simeq \mathcal{D}^b(\operatorname{mod} kY)$

Comments on derived equivalence

No known *algorithm* that decides if $X \sim Y$ (or $X \stackrel{u}{\sim} Y$). However, one can use:

• *Invariants* of the derived category; If $X \sim Y$ then X and Y must have the same invariants.

Examples of invariants are:

- \bullet The *number of points* of X.
- The Euler bilinear form on X, closely related to the Möbius function of X.

Constructions

Start with some "nice" X and get many Y-s with $X \sim Y$.

Known constructions

BGP Reflection

When X is a tree and $s \in X$ is a source (or a sink), invert all arrows from (to) s and get a new tree X' with $X' \sim X$.

Example.

• The square and D_4

Constructions of derived equivalent posets

Common theme: structured reversal of order relations.

- Generalized reflections (universal derived equivalences)
 - Flip-Flops, with application to posets of cluster tilting objects
 - Generalized BGP reflections
 - Hybrid construction
- Mirroring with respect to a bipartite structure
 - Mates of triangular matrix algebras

Flip-Flops

Let (X, \leq_X) , (Y, \leq_Y) be posets, $f: X \to Y$ order-preserving.

Define two partial orders \leq_+^f , \leq_-^f on $X \sqcup Y$ as follows:

- \bullet Keep the original partial orders inside X and Y.
- Add the relations

$$x \leq_+^f y \iff f(x) \leq_Y y$$

 $y \leq_-^f x \iff y \leq_Y f(x)$

for $x \in X$, $y \in Y$.

Theorem. $(X \sqcup Y, \leq_+^f) \stackrel{u}{\sim} (X \sqcup Y, \leq_-^f)$.

Flip-Flop - Example

Application – Posets of cluster tilting objects

Q - quiver without oriented cycles, k - field

 \mathcal{T}_Q — poset of *cluster tilting objects* in the *cluster category* of kQ [BMRRT, CCS, FZ]

When Q is a Dynkin diagram of type A, D, or E, the poset \mathcal{T}_Q is known as a *Cambrian lattice* [Reading], which is a quotient of the *weak order* on the corresponding Coxeter group.

In type A with the linear orientation, we get the *Tamari lattices*. Their Hasse diagrams are the 1-skeletons of polytopes known as the *Stasheff Associhedra*.

Tamari Lattices for A_1 and A_2

 A_1 :

 \mathcal{T}_{ullet}

 $(ab)c \rightarrow a(bc)$

 A_2 :

 \mathcal{T}_{ullet}

Tamari Lattice for A_3

Flip-flops on posets of cluster tilting objects

Q – quiver without oriented cycles.

x – a sink in Q.

Q' - the *BGP reflection* with respect to x.

Theorem. \mathcal{T}_Q and $\mathcal{T}_{Q'}$ are related via a flip-flop.

$$\mathcal{T}_Q\simeq (\mathcal{T}_Q^x\sqcup \mathcal{T}_Q\setminus \mathcal{T}_Q^x,\leq_+^f) \qquad \qquad \mathcal{T}_{Q'}\simeq (\mathcal{T}_{Q'}^x\sqcup \mathcal{T}_{Q'}\setminus \mathcal{T}_{Q'}^x,\leq_-^{f'})$$

Corollary. If $Q_1 \sim Q_2$ then $\mathcal{T}_{Q_1} \stackrel{u}{\sim} \mathcal{T}_{Q_2}$.

Generalized BGP reflections

Let (Y, \leq) be poset, $Y_0 \subseteq Y$ a subset with the property $[y,\cdot] \cap [y',\cdot] = \phi = [\cdot,y] \cap [\cdot,y'] \quad \text{for all } y \neq y' \text{ in } Y_0$

Define two partial orders $\leq_+^{Y_0}$, $\leq_-^{Y_0}$ on $\{*\} \cup Y$ as follows:

- ullet Keep the original partial order inside Y.
- Add the relations

$$*<_{+}^{Y_{0}} y \Longleftrightarrow \exists y_{0} \in Y_{0} \text{ with } y_{0} \leq y$$

$$y<_{-}^{Y_{0}} * \Longleftrightarrow \exists y_{0} \in Y_{0} \text{ with } y \leq y_{0}$$

for $y \in Y$.

Generalized BGP reflections – continued

The vertex * is a *source* in the Hasse diagram of $\leq_{+}^{Y_0}$, with arrows ending at the vertices of Y_0 .

The Hasse diagram of $\leq_{-}^{Y_0}$ is obtained by reverting the orientations of the arrows from *, making it into a sink.

Theorem.
$$(\{*\} \cup Y, \leq_+^{Y_0}) \stackrel{u}{\sim} (\{*\} \cup Y, \leq_-^{Y_0}).$$

Example.

Hybrid construction – setup

 (X, \leq_X) , (Y, \leq_Y) - posets, $\{Y_x\}_{x \in X}$ - collection of subsets $Y_x \subseteq Y$, with the properties:

• For all $x \in X$,

$$[y,\cdot]\cap[y',\cdot]=\phi=[\cdot,y]\cap[\cdot,y']$$
 for all $y\neq y'$ in Y_x

ullet For all $x \leq x'$, there exists an isomorphism $\varphi_{x,x'}: Y_x \stackrel{\sim}{\longrightarrow} Y_{x'}$ with $y \leq_Y \varphi_{x,x'}(y)$ for all $y \in Y_x$

It follows that $\{Y_x\}_{x\in X}$ is a *local system* of subsets of Y:

$$\varphi_{x,x''} = \varphi_{x',x''}\varphi_{x,x'}$$
 for all $x \le x' \le x''$.

Hybrid construction — result

Define two partial orders on \leq_+ , \leq_- on $X \sqcup Y$ as follows:

- \bullet Keep the original partial orders inside X and Y.
- Add the relations

$$x \leq_+ y \iff \exists y_x \in Y_x \text{ with } y_x \leq_Y y$$

 $y \leq_- x \iff \exists y_x \in Y_x \text{ with } y \leq_Y y_x$

for $x \in X$, $y \in Y$.

Theorem. $(X \sqcup Y, \leq_+) \stackrel{u}{\sim} (X \sqcup Y, \leq_-)$.

Remarks.

- When $X = \{*\}$, we recover the generalized BGP reflection.
- When $Y_x = \{*\}$ for all $x \in X$, we recover the flip-flop.

Mirroring with respect to a bipartite structure

Let S be bipartite. $(S = S_0 \sqcup S_1 \text{ with } s < s' \Rightarrow s \in S_0 \text{ and } s' \in S_1)$

Let $\mathfrak{X} = \{X_s\}_{s \in S}$ be a collection of posets indexed by S.

Define two partial orders \leq_+ and \leq_- on $\bigsqcup_{s \in S} X_s$ as follows:

- ullet Keep the original partial order inside each X_s .
- Add the relations

$$x_s <_+ x_t \Longleftrightarrow s < t \Longleftrightarrow x_t <_- x_s$$
 for $x_s \in X_s$, $x_t \in X_t$.

Theorem.
$$(\bigsqcup_{s\in S} X_s, \leq_+) \stackrel{u}{\sim} (\bigsqcup_{s\in S} X_s, \leq_-).$$

Bipartite structure – example

Mates of triangular matrix algebras

Let k be a field, R and S k-algebras and R bimodule. Consider the triangular matrix algebras

$$\Lambda = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \quad \text{and} \quad \widetilde{\Lambda} = \begin{pmatrix} S & DM \\ 0 & R \end{pmatrix}$$

where $DM = \text{Hom}_k(M, k)$.

Theorem. $\mathcal{D}^b(\mathsf{Mod}\,\Lambda) \simeq \mathcal{D}^b(\mathsf{Mod}\,\widetilde{\Lambda})$, under the assumptions:

- $\dim_k M < \infty$
- $\dim_k S < \infty$, $\operatorname{gl.dim} S < \infty$