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What is the connection between . ..

A17 A27 A37 D47 D57 E67 E77 E8
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Context

e Derived accessible algebras [Lenzing - de la Pefia 2008]

e Structured equivalence of Euler forms as an indicator of derived
equivalence.

e Categories of singularities; weighted projective lines [Lenzing et al.]
e Auslander algebras and initial modules [Geiss-Leclerc-Schroer]

e Cluster algebra structures on ...
— Upper-triangular unipotent matrices [Geiss-Leclerc-Schroer]

— Grassmannians [Scott 2006]
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Lines

N
k — field, A,, — the quiver

on

®] ®2 ®3

The path algebra kZZ is the incidence algebra of the linear order on
{1,2,...,n}.

For r > 2, consider A(n,r) = km/(ajr) —
the path algebra modulo the ideal generated by all the relations z".

e A(n,r) is of finite representation type,

e \We are interested in its derived equivalence class, following [Lenzing
- de la Pena, 2008].
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The algebras A(n,r)

N
e The derived equivalence class of A(n,3) for 1 <n <11:
A17A27A37D47D57E67E77E87C(27375)7C(27376)70(27377)

where C(2,p,q) is the canonical algebra of weight type (2,p,q)
[Lenzing - de la Pefa 2008].

e Characterization of the pairs (n,r) for which A(n,r) is piecewise
hereditary [Happel - U. Seidel].
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The ADE Chain: Aq1,Ao, A3, Dy, Ds, Eg, E/7, Fig
e [ he cluster type of ...

— the quiver

SN SN

with n vertices [Barot-Geiss-Zelevinsky 2006].

— the coordinate rings of the Grassmannians [Scott 2006]
Grz5,Gr3 e, Gra7,Grag (A2, Dy, Eg, Eg)

e T he derived equivalence class of the incidence algebras

A T S 1 P S O R
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Rectangles

X, Y posets = X x Y poset with (z,y) < (2/,7) iff z <2’ and y <4/,

Let n,m > 1. Consider the incidence algebra of Aﬁ X AT,;:

it F F f ? e Fully commutative quiver.
o o o e .o o Global dimension 2 (when m,n > 2).
e Periodic Coxeter transformation; even
fractionally Calabi-Yau of dimension
n—1 + m—1
.*ﬁ.fé. .*i. ?’L—I—l m_l_]_
0'  i i i °
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Derived equivalence of rectangles and lines

Theorem 1. k(A, X Ap) ~ A(m -n,m + 1).

I N O
0 O O

— > >
Generalizes A(n,2) ~ kA, and A(2n,3) ~ k(A, x As), hence A(—,m)
can be viewed as higher ADE chains.
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Invariants of derived equivalence

Derived equivalent algebras (with finite global dimension)

U

Equivalent Euler forms
with respect to bases of indecomposable projectives: Cartan matrices

U

Similar Coxeter transformations

U

Same Coxeter polynomial
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Example — quivers with three vertices

Let QQ,, be the quiver o ia e b e,

with Cartan matrix and Coxeter polynomial

1 b ba
C.pb=10 1 a Xap(T) =T3+ (3 —a® —b)T? 4+ (3 —a® - b*)T + 1.
0 0 1
Then
— 2 2 12 /12

Xap = Xa/py < a° +0"=a“+0 (e.g. {1,8} and {4,7})
but

Cop~ Cyyy (over Z!) <= {a,b} = {d,b'} <= kQup ~ kQy .

10
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Theorem 1 — Examining the Cartan matrices

.~0-0 = A(12,4)
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Proposition. Let

0

O

are equivalent over K.

)

and

A statement on matrices ...

( Al 0
0 AT
: 0

0

0

O
AT

)

/

be a square invertible matrix over a commutative
ring K. Then the bilinear forms represented by the matrices

12
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A statement on matrices ...

Proof. Let S = —A—1AT and set

( 0 _Sn—2 Sn—l\
: Sn—2 0
P=]10 -5 .. .
—I S 0
I 0 )
Then PI'CP = ', since
A A ... A A 0 Agn1
(o A A - A\ ( 0 \
pfl: o A .. :|P=P o .- .
5 el el A 0O AS O
\O ... ... 0 A) \A 0 ]

A AT 0
0o A AT
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... Interpreted as derived equivalence

A\ — finite-dimensional algebra over k with gl.dimA < oo.
DA\ = Homy(A, k), with multiplication maps

N DN — DA, DA QA N — DA, DA ® DN — 0.

Theorem 2.

(N A A AN (AN DA 0 0
oA A 0 A DA
AN@pkAn,=|: 0 A s ~ 0o A 0 [=r
: e N : . . DA
\0 ... ... 0 A \0 ... ... 0O A

Corollary. Taking A = kA,, we get Theorem 1.
14
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Proof of Theorem 2 — a tilting complex

A ®p kA, module: My — Mo — - — My,  M; € mod A
L
Let v = — ®A DA be the Serre functor, F = v|[1],
1o : N\ 0 O 0 0
17 0——FA 0 0 0
Thn—1: 0 0 0 0 Fn—1p

Then T =1Tg®1T7 D ---®1T,,_1 is a tilting complex with Enda T ~T.

T here are generalized versions for certain other auto-equivalences F'.
15
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Relevance

e Stable category of vector bundles on weighted projective lines
[Kussin-Lenzing-Meltzer-de la Pena]

vectXp 3, =~ DY (A(2(p — 1),3))

e Categories of (graded) singularities [loc. cit.]

2%+ y° + 2P

e [ he cluster algebra structure on the coordinate ring of the Grass-
mannian Grp, 41 n4m42 IS related to Ap X Ap [Scott 2006].

16
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Some initial modules of path algebras

() — an acyclic quiver, k() — its path algebra

T — the Auslander-Reiten translation

Consider the initial modules [Geiss-Leclerc-Schroer] of the form

Ko kQd - &7 TkQ (r > 0)
RNV NN N
N N Ny NN
NN N NS N
NS N N N

17
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Endomorphism rings of initial modules

Theorem 3. Let () be an acyclic quiver and » > 0 such that

T 1kQ, 77%kQ, ..., 7T TkQ

are all kQ-modules. Then

Endig (k@ P T_le PP 7'”7@@) ~ kQ Q@ kA, 41

Remark. No restrictions on r when @ is not Dynkin.

18
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Theorem 3 — Strategy of proof

e Examine the Euler forms (this time, with respect to the basis of simples)

( 0 ... 0) (44T 0o ... 0)

0 el 0 AT o
C=|: 0 . 0 : 0 .. 0 |=C
AT
o ... ... o a) Mo .. ... 0o 4y

e Observe structured equivalence ¢/ = PL'CP with

P =diag(l, S, S?,...,87), S=—_A"1aT
e Construct appropriate tilting complex.
e Generalized version.

19
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Auslander algebras

/\ — algebra of finite representation type.
The Auslander algebra of A is

Auslander(A) = End/\(@ M)
M
where M runs over all indecomposable A-modules.

The Auslander algebras of derived equivalent algebras need not be
derived equivalent:

20
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Auslander algebras of Dynkin quivers

A table of Dynkin quivers Q for which @ M = @, 77 kQ.

Diagram Orientation Derived type of Auslander algebra

Aoy none
Aopi1 symmetric Aopy1 X Apyg
Doy, any Doy X Agp—1
D2n—|—1 symmetric D2n—|—1 X Aoy
Eeg symmetric FEg X Ag
E any E7 x Ag
Esg any Eg X A15
T
L
N 3
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Triangles

Consider the Auslander algebras of A,,, (linear orientation):

Problem. Theorem 3 cannot be directly applied.

22
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Derived equivalence through repetitive algebras
/ \
\ /

\

Corollary. Combining Happel's Theorem and Theorem 3,

n—1

—
Auslander(AQn) ~ Endk1<4—>(@ T k‘A2n+1> ~ k(A2n+1 X An)
2n—+1

23
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... All these algebras are derived equivalent

— — 1,5
Auslander(Ay) ~ Eﬂdkj<4—> (kA5 DT kA5> ~ k(Ao x Ag) ~ A(10,3)
5
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