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Combinatorial aspects of derived equivalence

What is the connection between . . .
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The finite dimensional algebras arising from these combinatorial data
given by quivers with relations have equivalent derived categories of
modules.
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Combinatorial aspects of derived equivalence

Quivers with relations

A quiver Q is an oriented graph.

K – field, the path algebra KQ is

• spanned by all paths in Q,

• with multiplication given by composition of paths.

Example.

Q = •1 α //•2 β
//•3 KQ =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗


e1, e2, e3, α, β, αβ α · β = αβ β · α = 0
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Combinatorial aspects of derived equivalence

Quivers with relations (continued)

relation – a linear combination of paths having the same endpoints.

• zero relation p

• α //• β
//• αβ

• commutativity relation p− q
• β

$$J
JJJJJ

•
α ::tttttt

γ $$J
JJJJJ •
• δ

::tttttt

αβ − γδ

A quiver Q with relations defines an algebra KQ/I by considering the
path algebra KQ modulo the ideal I generated by all the relations.

Theorem [Gabriel]. If K is algebraically closed, then any finite dimen-
sional K-algebra is Morita equivalent to a quiver with relations.
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Example 1 – Line

K – field, n, r ≥ 2,

Line(n, r) = K
−→
An/(xr)

Given by the linear quiver
−→
An

•1 x //•2 x //•3 x // . . . x //•n

with zero relations – all the paths of length r.

Example. Line(10,3)

• //• //• //• //• //• //• //• //• //•
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Example 2 – Rectangle

n, m ≥ 1.

Rect(n, m) = K
−→
An ⊗K K

−→
Am

Given by the rectangular n-by-m quiver
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with all commutativity relations.
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Example 3 – Triangle

Triang(n) is the Auslander algebra of K
−→
An.

It has a triangular quiver having sides of length n, with zero and

commutativity relations.

Example. Triang(4)
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Derived categories

A – abelian category, C(A) – the category of complexes

K• = . . .
d−→ K−1 d−→ K0 d−→ K1 d−→ . . .

with Ki ∈ A and d2 = 0.

A morphism f : K• → L• is a quasi-isomorphism if

Hif : HiK• → HiL•

are isomorphisms for all i ∈ Z.

The derived category D(A) is obtained from C(A) by localization
with respect to the quasi-isomorphisms (that is, we formally invert all
quasi-isomorphisms). It is a triangulated category .
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Perspective

Triangulated and derived categories can relate objects of different
nature:

• Coherent sheaves over algebraic varieties and modules over non-
commutative algebras [Beilinson 1978, Kapranov 1988]

• Homological mirror symmetry conjecture [Kontsevich 1994]

. . . but also relate non-isomorphic objects of the same nature:

• Morita theory for derived categories of modules [Rickard 1989]

• Derived categories of coherent sheaves [Bondal-Orlov 2002]

• Broué’s conjecture on blocks of group algebras [Broué 1990]

10



Combinatorial aspects of derived equivalence

Derived equivalence of rings

Theorem [Rickard 1989]. Let R, S be rings. Then

D(ModR) ' D(ModS) (R, S are derived equivalent, R ∼ S)

if and only if there exists a tilting complex T ∈ D(ModR)

• exceptional: HomD(ModR)(T, T [i]) = 0 for i 6= 0,

• compact generator : 〈addT 〉 = per R,

such that S ' EndD(ModR)(T ).

Problems. existence? constructions?
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Derived equivalences of
lines, rectangles and triangles

Theorem [L]. Rect(n, r) ∼ Line(n · r, r + 1)

Rect(2r + 1, r) ∼ Triang(2r)

Example. Line(10,3) ∼ Rect(5,2) ∼ Triang(4).

Remark. Can be generalized to higher dimensional shapes (simplices,
prisms, boxes etc.)

• Derived accessible algebras [Lenzing - de la Peña 2008]

• Categories of singularities; weighted projective lines; nilpotent op-
erators [Kussin-Lenzing-Meltzer]

• Higher ADE chain.
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Tilting complexes from existing ones – tensor

A, B – K-algebras, K – commutative ring, ⊗ = ⊗K,

T – tilting complex over A,

U – tilting complex over B + technical conditions . . .

Theorem [Rickard 1991]. T ⊗ U is a tilting complex over A⊗B with

endomorphism ring EndD(A)(T )⊗ EndD(B)(U). Hence

A⊗B ∼ EndD(A)(T )⊗ EndD(B)(U).

Remark. Derived equivalence between tensor products of algebras.
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New tilting complexes from existing ones

T1, T2, . . . , Tn – tilting complexes over A,
U1 ⊕ U2 ⊕ · · · ⊕ Un – tilting complex over B + technical conditions . . .

Theorem [L]. Assume multiple exceptionality :

∀1 ≤ i, j ≤ n HomD(B)(Ui, Uj) 6= 0 ⇒ HomD(A)(Ti, Tj[r]) = 0 ∀r 6= 0.

Then (T1 ⊗ U1)⊕ (T2 ⊗ U2)⊕ · · · ⊕ (Tn ⊗ Un) is a tilting complex over
A⊗B with endomorphism ring given as the generalized matrix ring

...
. . . Mij . . .

...

, where Mij = HomD(A)(Tj, Ti)⊗HomD(B)(Uj, Ui).

• Derived equivalence between componentwise tensor products.

• Implies the derived equivalences of lines, rectangles, triangles . . .
14
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Global vs. local operations

The previous derived equivalences are global in nature – they change

the quiver drastically.

Motivated by an algorithmic point of view, we seek local operations

on the quivers that will produce derived equivalent algebras.
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Example – BGP Reflections at sinks/sources

Q – quiver without oriented cycles,
s – sink in Q, i.e. no outgoing arrows from s.

σsQ – the BGP reflection with respect to s, obtained from Q by
inverting all arrows incident to s, so that s becomes a source.

Theorem [Bernstein-Gelfand-Ponomarev]. KQ ∼ KσsQ.

Example.

•
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@@

@@
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>>~~~~~~~ •
∼

•

•

>>~~~~~~~ •

``@@@@@@@

Remark. Generalized by [Auslander-Platzeck-Reiten] to sinks in quivers
of arbitrary finite-dimensional algebras.

16



Combinatorial aspects of derived equivalence

What about other vertices?

• Combinatorial answer: quiver mutation [Fomin-Zelevinsky 2002].

• Algebraic answer: mutations of algebras.

We will define these notions and explore the relations between them.
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Quiver mutation [Fomin-Zelevinsky]

Q – quiver without loops ( •
��

) and 2-cycles (• ((•hh ),
k – any vertex in Q.

The mutation of Q at k, denoted µk(Q), is obtained as follows:

1. For any pair i
α−→ k

β−→ j, add new arrow i
[αβ]−−−→ j,

2. Invert the incoming and outgoing arrows at k,

3. Remove a maximal set of 2-cycles.
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Quivers and anti-symmetric matrices

{quivers, no loops and 2-cycles} ↔ {anti-symmetric integral matrices}
Q ↔ BQ

(BQ)ij = |{arrows j → i}| − |{arrows i → j}|

Example.

•2
||zz

zz
zz

zz

•1 //•3

bbDDDDDDDD

 0 1 −1
−1 0 1
1 −1 0


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Quiver mutation – matrix version

Mutation as a change-of-basis for the anti-symmetric bilinear form

[FZ, Geiss-Leclerc-Schröer]

Bµk(Q) = (r+k )TBQr+k = (r−k )TBQr−k

where

r−k =


1

.. .
∗ ∗ −1 ∗ ∗

. . .
1

 r+k =


1

.. .
∗ ∗ −1 ∗ ∗

. . .
1


(r−k )kj = |{arrows j → k}| (r+k )kj = |{arrows k → j}| (j 6= k)
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From vertices to complexes

K – algebraically closed field,

A = KQ/I – quiver with relations,

vertex i projective Pi, arrow i → j  map Pj → Pi

k – vertex in Q without loops,

T−k =
(
Pk →

⊕
j→k

Pj

)
⊕

⊕
i6=k

Pi, T+
k =

( ⊕
k→j

Pj → Pk

)
⊕

⊕
i6=k

Pi

Are these tilting complexes?

• Always compact generators,

• Exceptionality is expressed in terms of the combinatorial data.
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Mutations of algebras

If T−k is a tilting complex, the negative mutation at k is defined as

µ−k (A) = EndD(A)(T
−
k )

If T+
k is a tilting complex, the positive mutation at k is defined as

µ+
k (A) = EndD(A)(T

+
k )

• There are up to two mutations at a vertex,

• Mutations yield derived equivalent algebras,

• Mutations are perverse Morita equivalences [Chuang-Rouquier],

• Closely related to the Brenner-Butler tilting modules.
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Mutations of algebras – Example

A =
•2

""D
DD

DD
DD

D

•1

<<zzzzzzzz •3

µ−1 (A) is not defined µ+
1 (A) =

•2
||zz

zz
zz

zz

""D
DD

DD
DD

D

•1 •3

µ−2 (A) =
•2

||zz
zz

zz
zz

•1 //•3
µ+
2 (A) =

•2

•1 //•3

bbDDDDDDDD

µ−3 (A) =
•2

•1

<<zzzzzzzz •3

bbDDDDDDDD µ+
3 (A) is not defined

Remark. For A′ = µ−2 (A), neither µ−1 (A′) nor µ+
1 (A′) are defined.
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Cartan matrices and Euler forms

CA – the Cartan matrix of A, defined by (CA)ij = dimK HomA(Pi, Pj).

Remark. The bilinear form defined by CA is invariant under derived
equivalence.

Lemma.

C
µ−k (A) = r−k CA(r−k )T C

µ+
k (A)

= r+k CA(r+k )T

whenever the mutations are defined.

When A has finite global dimension, its Euler form is cA = C−T
A , and

c
µ−k (A) = (r−k )T cAr−k c

µ+
k (A)

= (r+k )T cAr+k

whenever the mutations are defined.
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Applications of mutations of algebras

Mutations behave particularly well for the following classes of algebras:

• Algebras of global dimension 2

• 2-CY-tilted algebras, i.e. endomorphism algebras of cluster-tilting

objects in 2-Calabi-Yau triangulated categories, including cluster-

tilted algebras and finite-dimensional Jacobian algebras.

[Amiot, Buan-Iyama-Reiten-Scott, Buan-Marsh-Reineke-Reiten-Todorov, BMR,

Iyama-Yoshino, Keller-Reiten, . . . ]

• Endomorphism algebras of cluster-tilting objects in stably 2-CY

Frobenius categories [BIRSc, GLS, Palu, . . . ]
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Application 1 – Algebras of global dimension 2

A – finite-dimensional K-algebra of global dimension 2 .

The ordinary quiver QA has

|{arrows i → j}| = dimK Ext1A(Si, Sj)

The extended quiver Q̃A [Assem-Brüstle-Schiffler, Keller] has

|{arrows i → j}| = dimK Ext1A(Si, Sj) + dimK Ext2A(Sj, Si)

so that B
Q̃A

= cA − cT
A is the anti-symmetrization of cA.

Example.

A =
•2

||zz
zz

zz
zz

•1 //•3
Q̃A =

•2
||zz

zz
zz

zz

•1 //•3

bbDDDDDDDD
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Mutations of algebras of global dimension 2

Assume: gl.dimA ≤ 2 and Q̃A without loops and 2-cycles.

Theorem [L].

If µ−k (A) is defined and gl.dimµ−k (A) ≤ 2, then Q̃
µ−k (A) = µk(Q̃A).

If µ+
k (A) is defined and gl.dimµ+

k (A) ≤ 2, then Q̃
µ+

k (A)
= µk(Q̃A).

Remark. Not all quiver mutations correspond to algebra mutations.

Question.

Can derived equivalences be realized as sequences of mutations?

27



Combinatorial aspects of derived equivalence

Example – Sequence of mutations

•6
##G
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OO
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OO
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EE
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OO
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•15oo

OO

•1

OO
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EE
E
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OO
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EE
E
•14oo

OO

•7

OO
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E
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E
•18oo
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OO
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E
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OO
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E
•20oo

OO

•16

OO

•19oo

OO
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1,2,3,4,5,6,7,8,9,10,11,1,2,3,4,5,12,13,14,15,7,8,9,10,1,2,3,4,

21,19,16,20,17,12,18,13,7,21,19,16,20,17,12,21,19,16
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Consequences for cluster algebras

Theorem [L]. Q̃Triang(2r) and Q̃Rect(2r+1,r) are mutation equivalent.

These are the cluster types of the cluster algebra structures on . . .

• Q̃Triang(2r)  upper-triangular unipotent matrices in SL2r+2

[Geiss-Leclerc-Schröer]

• Q̃Rect(2r+1,r)  Grassmannian Grr+1,3r+3 [Scott 2006]

Corollary. These cluster algebras have the same cluster type.
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Application 2 – Cluster-tilted algebras

Q – quiver, which is mutation equivalent to an acyclic one,

ΛQ – the cluster-tilted algebra [BMR] corresponding to Q.

It is the endomorphism algebra of a suitable cluster-tilting object in

a cluster category [BMRRT].

• The quiver of ΛQ is Q,

• The relations are uniquely determined, using mutations of quivers

with potential [Derksen-Weyman-Zelevinsky, Buan-Iyama-Reiten-Smith].
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Good and bad (quiver) mutations

Motivation. Relate mutation of quivers with mutation of algebras.

The quiver mutation of Q at k is good if

Λµk(Q) ' µ−k (ΛQ),
(
equivalently, ΛQ ' µ+

k (Λµk(Q))
)

otherwise it is bad.

Two reasons for bad quiver mutations:

• The algebra mutation µ−k (ΛQ) is not defined, or

• The algebra mutation µ−k (ΛQ) is defined, but takes incorrect value.
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Good and bad mutations – Examples

Example. The mutation at the vertex 2 is bad.

•2
""D

DD
DD

DD
D

•1

<<zzzzzzzz •3

•2
α
||zz

zz
zz

zz

•1 β
//•3

γbbDDDDDDDD αβ, βγ, γα

Example. The mutation at the vertex 2 is good.

•3
""D

DD
DD

DD
D

•1 //•2

<<zzzzzzzz •4oo

•3
""D

DD
DD

DD
D

•1

<<zzzzzzzz •2 //oo •4

Question. Are “most” mutations good or bad?
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Cluster-tilted algebras of Dynkin type E

Theorem [Bastian-Holm-L]. Complete derived equivalence classifica-
tion of cluster-tilted algebras of Dynkin type E.

The following are equivalent for two such algebras:

• Their Cartan matrices represent equivalent bilinear forms over Z,

• They are derived equivalent,

• Their quivers can be connected by a sequence of good mutations.

Type Number Classes
E6 67 6
E7 416 14
E8 1574 15
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Cluster-tilted algebras of Dynkin type A

• Description of the quivers

[Buan-Vatne 2008, Caldero-Chapoton-Schiffler 2006]

• Complete derived equivalence classification [Buan-Vatne 2008]

• Counting the number of quivers [Torkildsen 2008]

Type Number Classes

An ∼ 1√
π
4n+1n−5/2 ∼ 1

2n
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Conceptual explanation

A necessary condition for

Λµk(Q) ' µ−k (ΛQ),
(
equivalently, ΛQ ' µ+

k (Λµk(Q))
)

is that both algebra mutations µ−k (ΛQ) and µ+
k (Λµk(Q)) are defined.

Theorem [L]. This condition is also sufficient!

• That is, if both algebra mutations are defined, they automatically
take the correct values.

• Based on a result of [Hu-Xi].

Remark. With slight modifications, applicable to arbitrary cluster-
tilted algebras and even more generally, to 2-CY-tilted algebras.
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Algorithm to decide on good mutation

Assume: the Cartan matrices CΛQ
and CΛµk(Q)

are invertible over Q.

Theorem [L]. There is an effective algorithm that decides whether

Λµk(Q) ' µ−k (ΛQ), using only the data of the Cartan matrices.

It builds on the Gorenstein property [Keller-Reiten] and on [Dehy-Keller].
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Algorithm – Example

Λ =
•3

""D
DD

DD
DD

D

•1 //•2

<<zzzzzzzz •4oo

•3
""D

DD
DD

DD
D

•1

<<zzzzzzzz •2 //oo •4
= Λ′

CΛ =


1 0 0 0
1 1 0 1
1 1 1 0
0 0 1 1



1 1 0 0
0 1 1 0
1 0 1 0
0 1 1 1

 = CΛ′

CΛC−T
Λ =


1 −1 0 0
1 −1 0 1
1 0 0 0
0 0 1 0



0 0 1 0
1 −1 0 1
0 0 0 1
0 −1 0 1

 = (CΛ′C
−T
Λ′ )−1
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Sequences of good mutations

The quivers of derived equivalent cluster-tilted algebras of Dynkin
type A or E are connected by sequences of good mutations.

Result [Bastian-Holm-L]. Far-reaching derived equivalence classifica-
tion of cluster-tilted algebras of Dynkin type D.

Remark. There are derived equivalent cluster-tilted algebras of type
D whose quivers are not connected by good mutations.
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Summary

We discussed the derived equivalence of algebras arising from combi-
natorial data as quivers with relations.

• Global reasonings – based on tensor products.

• Local reasonings – based on mutations of algebras.

• Mutation of algebras vs. quiver mutation –

– Algebras of global dimension 2 ,

– 2-CY-tilted algebras, in particular cluster-tilted algebras.

For further details, see:
arXiv:0911.5137, arXiv:1001.4765, arXiv:0906.3422.

39


