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Abstract

In this work we study the homological properties of finite partially ordered sets as reflected in
their derived categories of diagrams. This subject stands at the junction of the areas of combina-
torics, topology, representation theory and homological algebra.

Background

Since their introduction by Verdier and Grothendieck in order to formulate duality in algebraic
geometry, triangulated categories in general, and derived categories in particular, have found
applications in diverse areas of mathematics and mathematical physics.

Triangulated categories have been successfully used to relate objects of different nature,
thus forming bridges between various areas of algebra and geometry. An example is Beilinson’s
result [6] on the equivalence of the derived category of coherent sheaves over a projective space
(which is of commutative nature) and the derived category of finite dimensional modules over a
certain finite dimensional, non-commutative, algebra. This result can be seen as a starting point
of non-commutative geometry.

Another example, motivated by its applications to physics, is Kontsevich’s formulation [56]
of the Homological mirror symmetry conjecture as an equivalence between a certain derived
category of coherent sheaves over an algebraic variety and a triangulated category of other nature
(the Fukaya category).

The question of equivalence of two derived categories arising from objects of the same na-
ture has also attracted a growing interest. For example, the question when two algebraic va-
rieties have equivalent derived categories of sheaves has been recently studied by Bondal and
Orlov [11]. Another, earlier, example is Rickard’s result [73], characterizing when two rings
have equivalent derived categories of modules, in terms of the existence of a so-called tilting
complex.

Rickard’s result leaves something to be desired, though, as for some pairs of algebras, it is
currently notoriously difficult, and sometimes even impossible, to decide whether there exists a
tilting complex. Such a difficulty is apparent in the still unsolved Broué’s conjecture asserting
derived equivalences between certain blocks of group algebras [78].
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Figure 1: Hasse diagrams of two non-isomorphic, yet universally derived equivalent posets.

The problem

We investigate similar questions for derived categories arising from finite partially ordered sets.
A finite partially ordered set (poset) is naturally endowed with a structure of a topological space.
The finite spaces obtained in this way are capable of modeling several quantitative topological
properties, such as the homology and homotopy groups, of various well-behaved manifolds in
Euclidean spaces [66].

A poset can also be considered as a small category, allowing one to form the category of
functors X — A, denoted AX, from a poset X to an abelian category A. The category A~
whose objects are also known as diagrams, is abelian and can be regarded as a category of
sheaves and sometimes of modules, as outlined below.

First, by viewing a poset as a topological space, diagrams can be considered as sheaves over
that space. Two recent applications of sheaves over posets include the computation, by Deligne,
Goresky and MacPherson [25], of the cohomology of arrangements of subspaces in a real affine
space, and the definition, by Karu [49], of intersection cohomology for general polytopes, in
order to study their h-vectors.

Second, when A is the category of finite dimensional vector spaces over a field &, diagrams
can also be identified with modules over the incidence algebra of X over k.

Definition. We say that two posets X and Y are universally derived equivalent if, for any abelian
category A, the (bounded) derived categories of diagrams D*(AX) and D?(AY) are equivalent
(as triangulated categories).

Two posets X and Y are derived equivalent over a field k if their incidence algebras over k
are derived equivalent.

Our main research aim is the study of these derived categories of diagrams, and in partic-
ular the questions when two posets are (universally) derived equivalent and how the derived
equivalence is related to the combinatorial properties of the posets in question.

As diagrams can be identified with sheaves and sometimes even with modules, both geo-
metrical tools from algebraic geometry and algebraic tools from representation theory can be
applied when studying the question of derived equivalence.

The derived equivalence relation, either universal or not, is strictly coarser than isomorphism.
A simple example demonstrating this is given in Figure 1. However, there is no known algorithm
which decides, given two posets, whether they are derived equivalent or not.
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Figure 2: Hasse diagrams of two posets derived equivalent by the bipartite construction.

There are two directions to pursue here. The first is to find invariants of derived equivalence,
that is, combinatorial properties of a poset which are shared among all other posets derived
equivalent to it. Examples of such invariants are the number of points, the Z-congruency class
of the incidence matrix, and the Betti numbers.

The second direction is to systematically construct, given a poset having certain combinato-
rial structure, new posets that are guaranteed to be derived equivalent to it. An example of an
analogous construction in the representation theory of quivers and finite dimensional algebras is
the Bernstein-Gelfand-Ponomarev reflection [9].

The results

Constructions of derived equivalences of posets and other objects

We have found several kinds of combinatorial constructions producing derived equivalences and
they are described in Part I of this work. The common theme of these constructions is the
structured reversal of order relations.

The bipartite construction

This construction is described in Chapter 1, where we show that a poset having a bipartite struc-
ture can be mirrored along that structure to obtain a derived equivalent poset. An example is
given in Figure 2.

To present this construction more precisely, we introduce the notion of a lexicographic sum
of a collection of posets along a poset, which generalizes the known notion of an ordinal sum. If
{Xs}ses is a collection of posets indexed by a poset S, the lexicographic sum of the X s along S
is the poset whose underlying set is the disjoint union of the X, and two elements are compared
first based on the indices of the sets they belong to (using the partial order on S), and when a tie
occurs — i.e. they belong to the same set X, according to the partial order inside X.

A poset S is called bipartite if its Hasse diagram is a bipartite directed graph.

Theorem. Let S be a bipartite poset. Then the lexicographic sum of a collection of posets along
S is derived equivalent to the lexicographic sum of the same collection along the opposite poset

iii
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This construction is inspired by the geometrical viewpoint of diagrams as sheaves, building
on the notion of a strongly exceptional collection introduced in the study of derived categories
of sheaves over algebraic varieties.

As a corollary, we see that the derived equivalence class of an ordinal sum of any two posets
does not depend on the order of summands. However, we gave an example showing that this is
not true for three summands.

By using the other, algebraic, viewpoint of diagrams as modules, we have extended the above
result to general triangular matrix rings, as described in Chapter 2. Instead of formulating the
result in its most generality (see Theorem 2.4.5), we shall demonstrate it in the case of algebras
over a field, as expressed in the following theorem.

Theorem. Let k be a field and let R, S be k-algebras. Assume that (at least) one of R, S is
finite dimensional and of finite global dimension. Then for any finite dimensional S-R-bimodule
rMsg, the triangular matrix algebras

R M J S DM
o s) ™ \o R
are derived equivalent, where the dual DM = Homy, (M, k) is viewed as an R-S-bimodule.

Generalized reflections

This construction, described in Chapter 3, produces universal derived equivalences that can be
considered as generalized reflections, described in very simple, explicit combinatorial terms.
This vastly generalizes the well-known Bernstein-Gelfand-Ponomarev reflections for quivers,
and has found applications in the representation theory of algebras for the study of the partial
orders of tilting modules and cluster-tilting objects over path algebras of quivers, as described
later in Part II of this work.

We shall demonstrate this construction in the following situation, called flip-flop. For a more
general setup, see Section 3.1.1. If X and Y are two posets and f : X — Y is an order-
preserving map, one can consider two partial orders gi and S{ on the disjoint union X UY,
defined as follows. Inside each of the sets X and Y, both orders agree with the original orders,
but between them, x Sfr yif f(z) <yandy < zify < f(z),wherexz € X andy € Y.

Theorem. The posets (X LY, Si) and (X LY, < ) are universally derived equivalent.

Note that this theorem is true also when the posets X and Y are infinite. The main tool used
in the construction is the notion of a formula, which consists of combinatorial data that produces,
simultaneously for any abelian category 4, a functor between the categories of complexes of
diagrams over two posets Z and Z’ with values in 4, inducing a triangulated functor between
the corresponding derived categories. When Z and Z’ have certain combinatorial structure, as
for example in the above constructions, we build such functors that are equivalences.

v
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Figure 3: Hasse diagrams of two universally derived equivalent posets of tilting modules of path
algebras of quivers whose underlying graph is the Dynkin diagram Ay4.

Combinatorial applications for tilting objects

In Part II of this work we demonstrate that the flip-flop constructions appear naturally in com-
binatorial contexts concerning partial orders of tilting modules and cluster tilting objects arising
from path algebras of quivers.

First we show that the posets of tilting modules, in the sense of Riedtmann-Schofield [75],
of any two derived equivalent path algebras of quivers without oriented cycles, are always uni-
versally derived equivalent. This is described in Chapter 4. An example is given in Figure 3.

Then we show a similar result for the posets of cluster tilting objects, described in Chapter 5.
Cluster categories corresponding to quivers without oriented cycles were introduced in [16] as
a representation theoretic approach to the cluster algebras introduced and studied by Fomin and
Zelevinsky [28]. In these categories one can define, similarly to tilting modules, cluster tilting
objects, which correspond to the clusters of the cluster algebra. The set 7c,, of cluster tilting
objects in the cluster category of a quiver () without oriented cycles admits a partial order as
described in [48].

Theorem. Let Q and Q' be two quivers without oriented cycles whose path algebras are derived
equivalent. Then the posets I, and I o are universally derived equivalent.

When the quiver @ is of finite type, the poset 7¢,, is a Cambrian lattice as introduced by
Reading [72], defined as a certain quotient of the weak order on the corresponding Coxeter
group. Its Hasse diagram is the 1-skeleton of a polytope known as the corresponding generalized
Associhedron.

Piecewise hereditary categories and posets

In Part III of the work we study posets whose categories of diagrams (over a field) are piecewise
hereditary, that is, derived equivalent to an abelian category of global dimension one. One



should think of such categories as the simplest ones after the semi-simple ones. We present
three results on such categories and posets.

The first result concerns the global dimension of a piecewise hereditary abelian category. In
general, this quantity can be arbitrarily large. However, we show that for a piecewise hereditary
category of diagrams over a poset, the global dimension cannot exceed 3. Moreover, we extend
this result to categories of modules over sincere algebras and more generally to a wide class of
finite length piecewise hereditary categories satisfying certain connectivity conditions expressed
via their graphs of indecomposable objects. Note that the bound of 3 is sharp. This result is
described in Chapter 6.

Second, we explore the relationships between spectral properties of the Coxeter transforma-
tion and positivity properties the Euler form, for finite dimensional algebras which are piecewise
hereditary. We show that for such algebras, if the Coxeter transformation is of finite order, then
the Euler bilinear form is non-negative. We also demonstrate, through incidence algebras of
posets, that the assumption of being piecewise hereditary cannot be omitted. This is done in
Chapter 7.

Finally, we give a complete description of all the canonical algebras (which form a special
class of piecewise hereditary algebras, introduced by Ringel [76]) that are derived equivalent to
incidence algebras of posets. This is expressed in the following theorem, whose proof can be
found in Chapter 8.

Theorem. A canonical algebra of type (p, X) over an algebraically closed field is derived equiv-
alent to an incidence algebra of a poset if and only if the number of weights of p is either 2 or
3.

Some parts of this work have appeared in journal papers; Chapter 1 is based on the paper [59]
and Chapters 6, 7 and 8 are based on the papers [57],[60] and [58], respectively.
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Chapter 1

On Derived Equivalences of Categories
of Sheaves over Finite Posets

1.1 Introduction

Since their introduction by Verdier [85] and Grothendieck in order to formulate duality in al-
gebraic geometry, triangulated categories in general, and derived categories in particular, have
found applications in diverse areas of mathematics and mathematical physics.

Triangulated categories have been successfully used to relate objects of different nature,
thus forming bridges between various areas of algebra and geometry. An example is Beilinson’s
result [6] on the equivalence of the derived category of coherent sheaves over a projective space
(which is of commutative nature) and the derived category of finite dimensional modules over a
certain finite dimensional, non-commutative, algebra. This result can be seen as a starting point
of non-commutative geometry.

Another example, motivated by its applications to physics, is Kontsevich’s formulation [56]
of the Homological mirror symmetry conjecture as an equivalence between a certain derived
category of coherent sheaves over an algebraic variety and a triangulated category of other nature
(the Fukaya category).

The question of equivalence of two derived categories arising from objects of the same na-
ture has also attracted a growing interest. For example, the question when two algebraic va-
rieties have equivalent derived categories of sheaves has been recently studied by Bondal and
Orlov [11]. Another, earlier, example is Rickard’s result [73], characterizing when two rings
have equivalent derived categories of modules, in terms of the existence of a so-called tilting
complex.

Rickard’s result leaves something to be desired, though, as for some pairs of algebras, it is
currently notoriously difficult, and sometimes even impossible, to decide whether there exists a
tilting complex. Such a difficulty is apparent in the still unsolved Broué’s conjecture asserting
derived equivalences between certain blocks of group algebras [78].

We investigate a similar question replacing the algebraic varieties with finite partially or-
dered sets (posets). Since a poset X carries a natural structure of a topological space, one can



consider the category of sheaves over X with values in an abelian category 4.

In this chapter we focus on the case where A is the category of finite dimensional vector
spaces over a field k, which allows us to identify the category of sheaves with a category of
modules over the incidence algebra of X over k, so that tools from the theory of derived equiv-
alence of algebras can be used. In Chapter 3 we shall study in greater detail the case where A is
an arbitrary abelian category.

We establish the notations and terminology to be used throughout this work in Section 1.2,
where we present in a specific way, appropriate for dealing with posets, the relevant basic notions
from sheaf theory.

Fix a field k, and denote by D’(X) the bounded derived category of sheaves of finite dimen-
sional k-vector spaces over X. Two posets X and Y are said to be derived equivalent if D*(X)
and D°(Y) are equivalent as triangulated categories.

The derived equivalence relation is strictly coarser than isomorphism (see Example 1.4.16).
However, there is no known algorithm which decides, given two posets, whether their derived
categories of sheaves of finite dimensional k-vector spaces are equivalent.

There are two directions to pursue here. The first is to find invariants of derived equivalence,
that is, combinatorial properties of a poset which are shared among all other posets derived
equivalent to it. Examples of such invariants are the number of points, the Z-congruency class
of the incidence matrix, and the Betti numbers. These invariants are discussed in Section 1.3,
where we also note that taking opposites and products preserves derived equivalence.

The second direction is to systematically construct, given a poset having certain combinato-
rial structure, new posets that are guaranteed to be derived equivalent to it. An example of an
analogous construction in the representation theory of quivers and finite dimensional algebras is
the Bernstein-Gelfand-Ponomarev reflection [9].

In Section 1.4 we present one such construction, the bipartite construction, which is based on
the notion of strongly exceptional sequences in triangulated categories and partially generalizes
the known constructions of [3, 9]. A purely algebraic formulation of the bipartite construction
will be given in Chapter 2, where we describe applications to derived equivalences of general
triangular matrix rings. Other constructions will be described in Chapter 3.

The bipartite construction produces, for any poset admitting a special structure, new poset
derived equivalent to it. In fact, for any closed subset Y C X, we construct a strongly ex-
ceptional collection in D’(X) and use it to show an equivalence D?(X) ~ DP(A) for a finite
dimensional algebra A which depends on Y. We give conditions on X and Y under which A
becomes an incidence algebra of a poset, and deduce that a lexicographic sum of a collection
of posets along a bipartite graph S is derived equivalent to the lexicographic sum of the same
collection along the opposite S°P.

As a corollary, we show that the derived equivalence class of an ordinal sum of two posets
does not depend on the order of summands. We give an example that this is not true for three
summands.



1.2 Preliminaries

1.2.1 Finite posets and 7|, spaces

Throughout this work, the term poset will mean a partially ordered set, which is assumed to be
finite unless stated otherwise. Any poset (X, <) carries a structure of a topological space by
defining the closed sets to be the subsets Y C X such thatify € Y andy < ytheny €Y.

For each € X, denote by {z}~ the closure of {z} and by U, the minimal open subset
of X containing =, which equals the intersection of the open sets containing x. Then {z}~ =
{2/ eX 2/ <z},U,={a’€ X : 2/ >2z}and

r<2 <= {2} C {2} = Uy CU,

If x,y are two distinct points in X, then one of the open sets Uy, U, does not contain both
points, thus X satisfies the T separation property.

Conversely, given a finite Tj topological space X, let U, be the intersection of all open sets
in X containing # € X. Define a partial order < on X by z < 2/ if U, C U,.

This leads to an identification of posets with finite 7 topological spaces. Such spaces have
been studied in the past [66, 82], where it turned out that their homotopy and homology proper-
ties are more interesting than might seem at first glance. For example, if K is any finite simplicial
complex and X is the T space induced by the partial order on the simplices of K, then there
exists a weak homotopy equivalence || — X [66].

1.2.2 Sheaves and diagrams

Given a poset X, its Hasse diagram is a directed graph defined as follows. Its vertices are the
elements of X and its directed edges x — y are the pairs < y in X such that thereisno z € X
with z < z < y. The anti-symmetry condition on < implies that this graph has no directed
cycles.

Let X be a poset and A be an abelian category. Using the topology on X, we can consider
the category of sheaves over X with values in A, denoted by Shx A or sometimes AX .

We note that sheaves over posets were used in [25] for the computation of cohomologies of
real subspace arrangements. In addition, it is of interest to note the relation between (weakly)
IC-constructible sheaves on a finite simplicial complex K and sheaves on the poset of simplices
of K, see [50, § 8.1].

Let F be a sheaf on X. If x € X, let () be the stalk of F over =, which equals F(Uy).
The restriction maps F(z) = F(U,) — F(Uy) = F(2') for 2’ > x give rise to a commutative
diagram over the Hasse diagram of X. Conversely, such a diagram {F.} defines a sheaf F by
setting the sections as the inverse limits F(U) = lim,cy F,. Indeed, it is enough to verify the
sheaf condition for the sets U,, which follows from the observation that for any cover U, =
\U; U=, one of the z; equals x.

Thus we may identify Shx A with the category of commutative diagrams over the Hasse di-
agram of X and interchange the terms sheaf and diagram as appropriate. The latter category can
be viewed as the category of functors X — .4 where we consider X as a category whose objects
are the points x € X, with unique morphisms  — 2’ for z < 2/. Under this identification, the



global sections functor I'(X; —) : AX — A defined as I'(X; F) = F(X), coincides with the
(inverse) limit functor limy : AX — A.

1.2.3 Functors associated withamap f : X — Y

A map f: X — Y between two finite posets is continuous if and only if it is order preserving,
that is, f(z) < f(2') for any z < 2’ in X [82, Prop. 7].

A continuous map f : X — Y gives rise to the functors fy, fi : ShxA — Shy A and
f~':Shy A — Shx A, defined, in terms of diagrams, by

(f719)(@) = G(f(x))
(£eF)(y) =lim{F(z) : f(z) >y}

(hF)(y) = lim{F(z) : f(x) <y}

wherez € X,y € Yand F € Shx A, G € Shy A. Viewing X, Y as categories and F € Shx A
as a functor F : X — A, the sheaves f,F and fiF are the right and left Kan extensions of F
along f: X — Y.

The functors f~!, f, coincide with the usual ones from sheaf theory. We have the following
adjunctions:

Homgy,, 4(f7'G, F) ~ Homgn, 4(G, fuF) (1.2.1)
Homgy,, 4(F, f~'G) ~ Homgp, 4(/F,G)

so that f, is left exact and fi is right exact. f~! is exact, as can be seen from its action on the
stalks.

If Y is a closed subset of X, we have a closed embedding © : Y — X. In this case, i, is
exact. This is because i, takes a diagram on Y and extends it to X by filling the vertices of X \ Y’
with zeros. Similarly, for an open embedding j : U — X, j is exact, as it extends by zeros
diagrams on U. Now let Y C X be closed and U = X \ Y its complement. The adjunction
morphisms jij 'F — F and F — i,i~!F for the embeddings i : Y — X andj: U — X
induce a short exact sequence

0 jj '\ FoF—id'F-0 (1.2.2)

for any sheaf F on X, as can be verified at the stalks.

1.2.4 Simples, projectives and injectives

When f : X — e is the mapping to a point, f, = I'(X; —), and for an object M of A, f~(M)
is the constant sheaf on X with value M.

Let x € X and consider the map i, : ® — X whose image is {z}. Then i, }(F) = F(x) is
the stalk at = and for an object M of A we have

M ify<uz

0 otherwise

M ify>az

0 otherwise

(i M)(y) = { (i1 M)(y) = {



with identity arrows between the M -s. The adjunctions (1.2.1) take the form:

Homgy,  a(F, iz M) ~ Homy(F(z), M) (1.2.3)
Homgy, x A(iz1 M, F) =~ Hom (M, F(z))

and we deduce the following lemma:

Lemma 1.2.1. If I is injective in A, iy, 1 is injective in Shx A. If P is projective in A, i, P is
projective in Shx A.

Corollary 1.2.2. If A has enough injectives (projectives), so does Shx A.

Proof. The identity maps F(x) — F(x) induce, via the adjuctions (1.2.3), an injection F —
Drexiz«F (z) and surjection GyexiznF(x) — F. Now replace each F(x) by an injective (or
projective) cover. O

For a sheaf F, let supp F = {x € X : F(x) # 0} be its support. We call F a stalk sheaf
if its support is a point. For any object M of A and x € X there exists a stalk sheaf M, whose
stalk at z equals M. Moreover M, is simple in Shx A if and only if M is simple in A.

The following lemma is proved by induction on the number of elements | X |, using (1.2.2)
and the fact that the partial order on X can be extended to a linear order, i.e. one can write the
elements of X in a sequence x1, x2, ..., T, such that for any 1 < 4,5 < n, r; < z; implies that
1< 7.

Lemma 1.2.3. Any sheaf F on X admits a finite filtration whose quotients are stalk sheaves.

Denote by gl.dim A the global dimension of an abelian category A. This is the maximal
integer n for which there exist objects M, M’ of A with Ext™(M, M) # 0 (and oo if there is
no such maximal n). Recall that an abelian category is a finite length category if every object is
of finite length. From Lemma 1.2.3, we have:

Corollary 1.2.4. If A is a finite length category, so is Shx A.

Definition 1.2.5. A strictly increasing sequence g < z1 < --- < xy in X is called a chain of
length n. The dimension of X, denoted dim X, is the maximal length of a chain in X.

Proposition 1.2.6 ([68]). gl.dim Shx A < gl.dim A + dim X.

The difference gl.dim Shx.A — gl.dim A obviously depends on X, but it may well depend
also on A4, see the examples in [47, 81].

1.2.5 Sheaves of finite-dimensional vector spaces

Fix a field k£ and consider the category A of finite dimensional vector spaces over k. Denote by
Shx the category Shx.A and by Homx (—, —) the morphism spaces Homgy, , (—, —) (We omit
the reference to k to emphasize that it is to be fixed throughout).

The incidence algebra of X over k, denoted kX, is the algebra spanned by e, for the pairs
x < yin X, with multiplication defined by e, y€.., = dy.€a0.



Lemma 1.2.7. The category Shx is equivalent to the category of finite dimensional right mod-
ules over the incidence algebra kX.

Proof. The proof is similar to the corresponding fact about representations of a quiver and right
modules over its path algebra. Namely, for a sheaf F, consider M = @,cxF(x) and let
Ly : F(x) — M, 7y : M — F(z) be the natural maps. Equip M with a structure of a right
kX -module by letting the basis elements e, for z < z’ act from the right as the composition

M ™ F(z) — F(a) “2’, M. Conversely, given a finite dimensional right module M over
kX, set F(x) = Me,, and define the maps F(x) — F(a') using the right multiplication by
Cry! - ]

The one dimensional space k is both simple, projective and injective in the category of k-
vector spaces. Applying the results of the previous subsection, we get, for any z € X, sheaves
Sz, Py, I, which are simple, projective and injective, respectively. Explicitly,

sx<y>—{k y=o Px<y>—{"” y2e fgc(y)—{’“ y=o

0 otherwise ’ 0 otherwise ' 0 otherwise

By (1.2.3), for any sheaf F, Homx (P,,F) = F(x) and Homx (F, I,) = F(z)" (the dual
space). Since the sets U,,{x}~ are connected, the sheaves P,, I, are indecomposable. The
sheaves S, P, I, form a complete set of representatives of the isomorphism classes of simples,
indecomposable projectives and indecomposable injectives (respectively) in kX .

By Corollary 1.2.2, Shx has enough projectives and injectives (note that this can also be
deduced by its identification with the category of finite dimensional modules over a finite dimen-
sional algebra). It has finite global dimension, since by Proposition 1.2.6, gl.dim Shx < dim X.

Proposition 1.2.8. Shx and Shy are equivalent if and only if X and Y are isomorphic (as
posets).

Proof. Since the isomorphism classes of simple objects in Shx are in one-to-one correspon-
dence with the elements = € X, and for two such simples .S, S, dimy, Ext! (Sz, Sy) equals 1 if
there is a directed edge x — y in the Hasse diagram of X and 0 otherwise, we see that the Hasse
diagram of X, hence X, can be recovered (up to isomorphism) from the category Shx. O

1.2.6 The derived category of sheaves over a poset

For a poset X, denote by D?(X) the bounded derived category of Shx. For a textbook intro-
duction to derived categories, we refer the reader to [33, Chapter III]. For a quick definition, see
Section 3.2.

If £ is a set of objects of a triangulated category 7, we denote by (€) the triangulated
subcategory of 7 generated by £, that is, the minimal triangulated subcategory containing £.
We say that € generates T if (€) =T .

Since Shy is of finite global dimension with enough projectives and injectives, D°(X) can
be identified with the homotopy category of bounded complexes of projectives (or bounded
complexes of injectives). Hence the collections { P, },ex and {1, },cx generate D?(X).



Lemma 1.2.9. Letx,y € X and i € Z. Then

‘ , kE y<zxzandi=0
Home(X)(Pra Pyli]) = Home(X) (L, Iyli]) = .
0 otherwise
Proof. Since P is projective, Hompe x(Py, F[i]) = O for any sheaf F and i # 0. If 2,y € X,
then
k ifz>y

Home(X)(Px,Py) = Homx (P,, Py) = Py(x) = .
0 otherwise

The proof for {1, },cx is similar. O

For a continuous map f : X — Y, denote by Rf,, Lfi, f~' the derived functors of
fs, fi, f~1. The adjunctions (1.2.1) imply that

Hompy(x)(f "G, F) ~ Hompe(y (G, Rf.F) (1.2.4)
Home(X)(j:) fﬁlg) = HOme(y)(Lﬁ]:,g)

for F € D*(X), G € DO(Y).

Definition 1.2.10. We say that two posets X and Y are derived equivalent, denoted X ~ Y, if
the categories D?(X) and D®(Y") are equivalent as triangulated categories.

1.3 Combinatorial invariants of derived equivalence

We give a list of combinatorial properties of posets which are preserved under derived equiva-
lence. Most of the properties are deduced from known invariants of derived categories. For the
convenience of the reader, we review the relevant definitions.

1.3.1 The number of points and /K -groups

Recall that for an abelian category A, the Grothendieck group Ky(A) is the quotient of the
free abelian group generated by the isomorphism classes [X] of objects X of A divided by
the subgroup generated by the expressions [X| — [Y] + [Z] for all the short exact sequences
0—-X—-Y—>Z7Z—-0inA

Similarly, for a triangulated category 7, the group Ko(7') is the quotient of the free abelian
group on the isomorphism classes of objects of 7" divided by its subgroup generated by [X] —
[Y] + [Z] for all the triangles X — Y — Z — X[1] in 7 (where [1] denotes the shift). The
natural inclusion A — D?(A) induces an isomorphism K(A) = Ko(D’(A)).

Let X be a poset and denote by | X| the number of points of X. Denote by K((X) the group
Ko(D(X)).

Proposition 1.3.1. Ky (X) is free abelian of rank | X |.



Proof. The set {S; }.cx forms a complete set of representatives of the isomorphism classes of
simple finite dimensional kX -modules, hence it is a Z-basis of Ky(X) (alternatively one could
use the filtration of Lemma 1.2.3). L]

Corollary 1.3.2. If X ~ Y then | X| =Y.

It is known [26] that rings with equivalent derived categories have the same K -theory. How-
ever, higher K-groups do not lead to refined invariants of the number of points.

Proposition 1.3.3. K;(Shyx) ~ K;(She) X! fori > 0.
Proof. Shx is a finite length category and by [71, Corollary 1, p. 104],
Ki(Shx) ~ €P Ki(Endx(S.))
zeX
Clearly, k = Endx (S;). O

1.3.2 Connected components

For two additive categories 71, 75, consider the category 7 = 77 x 75 whose objects are pairs
(M, My) and the morphisms are defined by

HomT((Ml,Mg), (Nl,NQ)) = HOH]TI(Ml,Nl) X HOHl']é(MQ,NQ)

71, 75 are embedded in 7 via the fully faithful functors M; +— (M7,0) and My — (0, Ms).
Denoting the images again by 77, 75, we have that Hom7 (77, 72) = 0. In addition, the inde-
composables in 7 are of the form (M7, 0) or (0, Mz) for indecomposables M, € 7y, My € Ts.

An additive category 7 is connected if for any equivalence 7 ~ 77 x 7, one of 7y, 75 is
Zero.

Definition 1.3.4. A poset X is connected if it is connected as a topological space. This is
equivalent to the following condition [82, Prop. 5]:

For any x,y € X there exists a sequence x = zg,21,...,T, = y in X such that for all
0 <17 < n,either x; < Tjt1 OF Ty > Tjt1-

Lemma 1.3.5. If X is connected then the category D*(X) is connected.

Proof. Let D*(X) ~ 7; x 75 be an equivalence and consider the indecomposable projectives
{Pr}zex. Since each P, is indecomposable, its image lies in 7; or in 73, and we get a partition
X = X7 U Xs.

Assume that X is not empty. Since Hom (P, P,) # 0 for all y <  and Hom(73,73) = 0,
X1 must be both open and closed in X, and by connectivity, X1 = X. Moreover, {P, },cx
generates D°(X) as a triangulated category, hence D?(X) ~ 77 and 75 = 0. O

Proposition 1.3.6. Let X and Y be two posets with decompositions
X=X1UXoU---UXy Y=Y1UY,U --UY,
into connected components. If X ~'Y then s = t and there exists a permutation won {1, ..., s}

such that X; ~ Yy forall 1 <i <s.
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Proof. There exists a pair of equivalences

F
e

-

G

If € X, the image F(P;) is indecomposable in D°(Y’), hence lands in one of the D°(Y;),
and we get a function f : X — {1,...,s}. Forany 2/ < z, Homx (P, Py) # 0, therefore f
is constant on the connected components X; and induces a map wp : {1,...,t} — {1,... s}
via 7 (i) = f(z) for z € X;. Moreover, since { P, }zc, generates D’(X;) as a triangulated
category, F restricts to functors D°(X;) — Db(YﬁF(i)), 1<i<t.

Similarly for G, we obtain a map 7¢ : {1,...,s} — {1,...,t} and functors D°(Y;) —
Db (Y, (7)) Which are restrictions of G.

For any 1 < i < t, the image of D°(X;) under GF lies in Db(XWGWF(Z-)). Since GF is
isomorphic to the identity functor but on the other hand there are no nonzero maps between
Db(X;) and D?(X ;1) for i # i’ (as we think of X; as subsets of X, not just as abstract sets!), we
get that g (i) = i so that g7 is identity. Similarly, 7p7¢ is identity.

We deduce that s = ¢, mr and 7 are permutations, and the restrictions of F' induce equiva-
lences D°(X;) ~ D (Yrp(i))- O

DY(X1) x --- x DY(X;) = DP(X) DY) = DO(Yy) x --- x DV(Yy)

One can also deduce that the number of connected components is a derived invariant by
considering the center Z (kX ) of the incidence algebra kX using the fact that derived equivalent
algebras have isomorphic centers [73].

Lemma 1.3.7. Z(kX) = k x k x --- X k where the number of factors equals the number of
connected components of X.

Proof. Letc=3_, o cayezy € Z(kX). Comparison of the coefficients of e;,c and cez, gives
Coy = 0forz # y, thusc =) cpeq.

If z < ythen cpepy = cepy = €xyC = cyeyy, hence ¢, = ¢, if x, y are in the same connected
component. O

1.3.3 The Euler form and Mébius function

Let X be a poset. Since Shx has finite global dimension, the expression
(K,L)x = (—1)" dimy, Hompsx) (K, L[i])
S/
is well-defined for K, L € D(X) and induces a Z-bilinear form on K (X ), known as the Euler

form.
Recall that the incidence matrix of X, denoted 1y, is the X x X matrix defined by

1 z<y
1 = -
( X)xy {0 otherwise

By extending the partial order on X to a linear order, we can always arrange the elements of X
such that the incidence matrix is upper triangular with ones on the diagonal. In particular, 1y is
invertible over Z.

11



Definition 1.3.8. The Mobius function jux : X x X — Zis defined by pux (z,y) = (1 )ay-
The following is an immediate consequence of the definition.

Lemma 1.3.9 (Mobius inversion formula). Let f : X — Z. Define g : X — 7Z by g(x) =
> oyse f(). Then f(z) =32 <, px (2, 9)9(y).

The Mobius inversion formula can be used to compute the matrix of the Euler form with
respect to the basis of simple objects.

Lemma 1.3.10. ([P,],[S,]) y = 02y forall z,y € X.

Proof. Since Py is projective, Homp () (Py, F[i]) = 0 for any sheaf 7 and i # 0. Now
by (1.2.3), Hompex)(Py, Sy) = Homx (Py, Sy) = Sy(x). O
Proposition 1.3.11. Let x,y € X. Then ([S.], [Sy]) v = px(x,y).

Proof. Fix y and define f : X — Z by f(x) = ([S:],[Sy])x- Since [Pz] = 37,5, [Sw],
Lemmas 1.3.9 and 1.3.10 imply that

f@) =) ux(e,a) ([Po] [Sy]) x = px(2,y)

z'>x

O]

Definition 1.3.12. Let R be a commutative ring. Two matrices My, My € GL, (R) are congru-
ent over R if there exists a matrix P € GL,,(R) such that My = PM; Pt.

Note that if M;, My is a pair of congruent matrices, so are M, M4 and M, ', M, . Denote
by M~ the inverse of the transpose of M.

Corollary 1.3.13. If X ~ Y then 1x, 1y are congruent over Z.

Proof. An equivalence F : D°(X) — D*(Y') induces an isomorphism [F] : Ko(X) — Ko(Y)
which preserves the Euler form. By Proposition 1.3.11, the matrix of the Euler form of D°(X)
over the basis of simples is 1', hence [F]'1,'[F] = 1" O

In practice, testing for congruence over Z is not an easy task. However, the following nec-
essary condition is often very useful in ruling out congruence.

Lemma 1.3.14. Let My, My € GL,(R) be congruent. Then the matrices Mlet, MgM{t
are conjugate in the group GL,,(R).

Proof. 1If My = PM; P! for some P € GL,(R), then
MyMy "t = (PMPHY (P M PY) = PMy M P P!
O

Corollary 1.3.15. If X ~ Y then 1x 1; and 1y 1;} are similar over 7. In particular, they are
similar over Q and modulo all primes p.

Note that 1x 1; is (up to sign) the Coxeter matrix of the algebra kX. It is the image in
Ko(X) of the Serre functor on D?(X).
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1.3.4 Betti numbers and Euler characteristic

The Hochschild cohomology is a known derived invariant of an algebra [35, 74]. For posets,
one can compute the Hochschild cohomology as the simplicial cohomology of an appropriate
simplicial complex [20, 34]. Thus the simplicial cohomology is a derived invariant, which we
relate to the cohomology of the constant sheaf.

For the convenience of the reader, we review the notions of sheaf cohomology, simplicial
cohomology and Hochschild cohomology. As before, we keep the field k fixed.

Sheaf cohomology

Recall that the i-th cohomology of a sheaf 7 € Shy, denoted H'(X; F), is the value of the
i-th right derived functor of the global sections functor I'(X; —) : Shx — She. Observe that
I'(X;F) = Homx (kx,F) where kx is the constant sheaf on X, i.e. kx(xz) = k for all
x € X with all morphisms being the identity of k. It follows that H*(X; F) = Ext (kx, F).
Specializing this for the particularly interesting cohomologies of the constant sheaf, we get that
Hi(X; kx) = Eth{(kX? ktx).

Simplicial cohomology

Let X be a poset, p > 0. A p-dimensional simplex in X is a chain of length p. Since
subsets of chains are again chains, the set of all simplices in X forms a simplicial complex
K(X) [66], known as the order complex of X. The i-th simplicial cohomology of X is de-
fined as the i-th simplicial cohomology of X(X), and we denote it by H(X). The number
BH(X) = dimy H(X) is the i-th Betti number of X.

The simplicial cohomology of X is related to the cohomology of the constant sheaf via
appropriate simplicial resolution, which we now describe.

Let I, be the indecomposable injective corresponding to x. For a simplex o, set I, =
Iinos Where min o is the minimal element of 0. If 7 C ¢, then min7 > mino, hence
Homx (I, 1I,) ~ k.

Let X® denote the set of p-simplices of X and let Igg = ®B,cxmls. For a p-simplex
o=x9<z1 <---<zpand 0 < j < p, denote by 57 the (p — 1)-simplex obtained from o
by deleting the vertex x;. By considering, for all o € X (P) and 0 < j < p, the map I;; — I,
corresponding to (—1)/ € k , we get a map dP~! : Zﬁ’{l — T%.. The usual sign considerations
give dPdP~! = 0.

Lemma 1.3.16. H'(X) = H (Homx (kx,Z%)) for all i > 0.
Proof. Indeed, the p-th term is
Homx (kx,Z%) = ®,c xm Homx (kx, I;) = & ¢y kx(mino)

and can be viewed as the space of functions from X () to k. Moreover, the differential is exactly
the one used in the definition of simplicial cohomology. U
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1
Lemma 1.3.17. The complex 0 — kx — Ig( — I)l( <, isan injective resolution of the
constant sheaf kx.

Proof. 1t is enough to check acyclicity at the stalks.
Let x € X. Then I,(x) # 0 only if mino > =z, hence it is enough to consider the p-
simplices of U,, and the complex of stalks at x equals

0—k— HomUz(k:Uz,I[O]m) — HomUz(k:Uz,Illjx) — ..

The acyclicity of this complex follows by Lemma 1.3.16 with X = Uy, using the fact that U,
has z as the unique minimal element, hence K(Uy) is contractible and H*(U,) = 0 fori > 0,
HO(U,) = k. O

Proposition 1.3.18. H'(X; kx) = H'(X) foralli > 0.
Proof. Using Lemma 1.3.16 and the injective resolution of Lemma 1.3.17,

H'(X; kyx) = H (Homy (kx,Z%)) = H(X)

Hochschild cohomology

A k-algebra A has a natural structure of a A-A-bimodule, or a A ®; A°P right module. The group
Exth o nor (A, A) is called the i-th Hochschild cohomology of A, and we denote it by HH(A).

The Hochschild cohomology of incidence algebras of posets was widely studied, see [20,
31, 34]. The following theorem relates the Hochschild cohomology of an incidence algebra of a
poset X with its simplicial cohomology.

Theorem 1.3.19 ([20, 34]). HH(kX) = HY(X) for all i > 0.

Combining this with Proposition 1.3.18, we get:
Corollary 1.3.20. HH'(kX) = H'(X; kx) = Ext (kx, kx) forall i > 0.
Derived invariants

Corollary 1.3.21. If X ~ Y then 3'(X) = B(Y) forall i > 0.

Proof. Follows from Theorem 1.3.19 and the fact that the Hochschild cohomology of a k-
algebra is preserved under derived equivalence [36, 74]. O

The alternating sum x (X)) = Zizo(_l)i B%(X) is known as the Euler characteristic of X.

Corollary 1.3.22. If X ~ Y then x(X) = x(Y).
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We give two interpretations of x(X). First, by Proposition 1.3.18,

X(X) =Y (=1)'8(X) = dimy Hompsxy (kx, kx[i]) = ([kx], [kx])x
120 i>0

where [kx] is the image of kx in Ko(X). Since [kx] = >, x[Sz],

(kx), kx]) = D (Sal ISyl x = D px(ey)

z,yeX z,yeX

hence x(X) is the sum of entries of the matrix 1;(1. We see that not only the Z-congruence class
of 1)_(1 is preserved by derived equivalence, but also the sum of its entries.
For the second interpretation, changing the order of summation we get

Z ([Sa], [Sy]) x = Z(_l)i Z dimEth((Sany)

z,yeX 120 z,yeX

Using the fact that dim Ext?(S,, S,) equals d,,, for i = 0; counts the number of arrows from
to y in the Hasse diagram of X when ¢ = 1; and counts the number of commutativity relations
between z and y for i = 2, we see that at least when gl.dim X < 2, x(X) equals the number of
points minus the number of arrows in the Hasse diagram plus the number of relations etc.

1.3.5 Operations preserving derived equivalence
We show that derived equivalence is preserved under taking opposites and products.

Definition 1.3.23. The opposite of a poset X, denoted by X, is the poset (X, <°P) with
x <° 7’ if and only if z > 2’

Lemma 1.3.24. Let A be an abelian category. Then Shxop A ~ (Shx A°P)°P.

Proof. A sheaf F over X°P with values in A is defined via compatible .A-morphisms between
the stalks F(y) — F(x) for z < y. Viewing these morphisms as .A°’-morphisms we identify
F with a sheaf over X with values in A°. Since a morphism of sheaves F — G is specified via
compatible .A-morphisms F(x) — G(x), this identification gives an equivalence Shxor A =~
(Shx A°P)P. O

Corollary 1.3.25. Shxop is equivalent to (Shx )°P.

Proof. Let A be the category of finite dimensional k-vector spaces. Then the functor V +— V'V
mapping a finite dimensional k-vector space to its dual induces an equivalence A ~ A°P. O

Proposition 1.3.26. If X ~ Y then X°P ~ Y P,

Proof. 1t is well known that for an abelian category .A, the opposite category A is also abelian
and D?(A) ~ D’(A°P)°P by mapping a complex K = (K*);cz over A to the complex K" over
A% with (KV)! = K%,

Applying this for A = Shy and using Corollary 1.3.25, we deduce that D*(X°P)
Db(X)oP,

O R
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Definition 1.3.27. The product of two posets X, Y, denoted X x Y, is the poset whose under-
lying setis X x Y, with (z,y) < («/,y/) ifx < 2’ and y < /.

Lemma 1.3.28. k(X xY) = kX @ kY.

Proof. Observe that the function kX kY — k(X xY) defined by mapping the basis elements
€z’ @ €y 10 €(5 4y (21 o) Where z < 2’ and y < v/, is an isomorphism of k-algebras. O

Proposition 1.3.29. If X1 ~ Xo and Y1 ~ Yy then X1 X Y] ~ X9 X Ya.

Proof. The claim follows from the previous lemma and the corresponding fact for tensor prod-
ucts of finite dimensional algebras over k, see [74, Lemma 4.3]. ]

1.4 Derived equivalences via exceptional collections

1.4.1 Strongly exceptional collections

Let k be a field and let 7 be a triangulated k-category.

Definition 1.4.1. A sequence F1, ..., E, of objects of 7 is called a strongly exceptional col-
lection if
Homy (Es, Ey[i]) =0 1<s,t<n,i#0
Homy(FEs, Ey) =0 1<s<t<n (1.4.1)
Homy(Es, Es) = k 1<s<n

An unordered finite collection £ of objects of 7 will be called strongly exceptional if it can
be ordered in a sequence which forms a strongly exceptional collection.

Let £ = Fy,. .., E, be a strongly exceptional collection in 7, and consider £ = ®7_; E;.
The conditions (1.4.1) imply that Hom7 (E, E[i]) = 0 for i # 0 and that End7(E) is a finite
dimensional k-algebra. If £ generates 7, then F is a tilting object in T .

For an algebra A over k, denote by D’(A) the bounded derived category of complexes of
finite dimensional right modules over A. The following result of Bondal shows that the existence
of a generating strongly exceptional collection in a derived category leads to derived equivalence
with D(A) where A is the endomorphism algebra of the corresponding tilting object.

Theorem 1.4.2 ([12, §6]). Let A be an abelian category and let E, . .., E, be a strongly ex-
ceptional collection which generates D°(A). Set E = @"_, E,. Then the functor

RHom(E, ) : D*(A) — D*(Endps( 4 E)
is a triangulated equivalence.

When A is a category of finite dimensional modules over a finite dimensional algebra, as in
the case of Shy, the result of the theorem can also be deduced from Rickard’s Morita theory
of derived equivalences of algebras [73] (see also [51, (3.2)]) by observing that F is a so-called
one-sided tilting complex.
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Example 1.4.3. For a poset X, the collection { P, },cx (and {I,},c x) of indecomposable pro-
jectives (injectives) is strongly exceptional, generates D’(X), and the corresponding endomor-
phism algebra is isomorphic to the incidence algebra of X (Use Lemma 1.2.9).

1.4.2 A gluing construction

Let 7,7, 7" be three triangulated categories with triangulated functors

i1 I
Assume that there are adjunctions
Homz (i ' F, F') ~ Homz(F, i, F") (1.4.2)
Homzw (F”,j7'F) ~ Homy (i F", F) (1.4.3)

for F e T,F € T',F" € T". Assume also that j i, = 0,75 = 0, i~ ', ~ Ids and
._1 .
J7 = Idg.

Lemma 1.44. Let 7,G € T. Then

Homy (ixi ' F,ivi 1G) ~ Homg (F,isi 'G) (1.4.4)
Hom7 (jij ' F, ji7~'G) ~ Homs (jij "' F, G) (1.4.5)
Homy (jij ' F,i.i"'G) =0 (1.4.6)

Proof. The claims follow from the adjunctions (1.4.2),(1.4.3) and our additional hypotheses.
For example, for the first claim use (1.4.2) and i~ 1i, ~ Id to get that

Homy (i,i ' F,i.i 'G) ~ Homp (i Yii 1 FLi71G) =
= Homy (i ' F,i7'G) ~ Homy (F,i,i 'G)
O
We apply this for the following situation, cf. [7, §1.4]. Let X be a poset andlet Y C X be a

closed subset, U = X \ Y its complement. Denote by i : Y — X, j : U — X the embeddings.
Since the functors i,, ji are exact, we can consider the functors

i7l:DY(X) — DO(Y) j7LDY(X) — DY(U)
i : D°(Y) — DU(X) 41 : DY(U) — Db(X)
between the derived categories. Taking 7 = D?(X), 7" = D*(Y) and 7" = D®(U), we see that
the above assumptions are satisfied, where the adjugctions (1.4.2), (1.4.3) follow from (1.2.4).

Fory e Yandu € U, let P, = i*i_le and I, = jij ', be “truncated” versions of the
projectives and injectives. Explicitly,

~ k zeY, y<zx ~ k zeU,z<u
Py(x)—{ Iu(x)—{

0 otherwise 0 otherwise

with identity maps between nonzero stalks.
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Proposition 1.4.5. The collection &y = {ﬁy} ; U {fu[l]} u is strongly exceptional and
ye ue
generates D°(X).

Proof. Lety,y €Y. By (1.44),

~ ~ ~ ~ kE ify <y
Hom(P,, P,y) ~ Hom(P,, P,) = Py (y) = - 1.4.7
( vy ) ( vy ) Y () {() otherwise ( )

and Hom(P,, P,[n]) = 0 for n # 0. Similarly, for u, ' € U, by (1.4.5),

: /
Hom(1y, I,y) ~ Hom(I,, Iy) = I,(uv) = {k ifu §.u (1.4.8)
0 otherwise
and Hom (I, I,s[n]) = 0 for n # 0.
Lety € Y and u € U. By (1.4.6), Hom(fu,ﬁy[n]) = 0 for all n € Z. Consider now
Hom(ﬁy,fu[n]). The distinguished triangle I, — I, — iy I, — fu[l] of (1.2.2) gives rise
to a long exact sequence

.. — Hom(P,, I,,) — Hom(P,, I,,) — Hom(P,,i,i 'I,) — ... (1.4.9)

Since I, is injective, Hom(ﬁy, I,[n]) = 0forn # 0 and Hom(]gy, I,) = Igy(u) = 0. Therefore
(1.4.9) induces isomorphisms

Hom(P,, i,i ' I,[n]) = Hom(P,, I,[n + 1)) (1.4.10)
foralln € Z. By (1.4.4),

(i ' L) (y) n=0

Hom(ﬁy,i*i_llu[n]) = Hom(Py,i*i_IIu[n]) — {0 Iy
n

and (i,i~11,)(y) = k if y < u and 0 otherwise, hence

~ - Eoify <
Hom(P,, I,1]) =4 " Y=" (14.11)
0 otherwise
and Hom(P,, I,[1 4+ n]) = 0 for n # 0.
Note that one can also compute Hom(P,, I,,[n]) by considering the triangle 5 ~'P, —
P, — P, — 5171 P,[1] and using the induced isomorphisms

Hom(j1j ' P,, I[n]) = Hom(P,, I[n + 1)) (1.4.12)

The above calculations show that if we order each of the sets Y and U linearly extending
the partial order induced by X and arrange the elements of £y in a sequence by first taking the
elements of U and then taking those of Y, we get a strongly exceptional collection.
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To prove that & generates D°(X), it is enough to show that every sheaf belongs to the
triangulated subcategory generated by £y. By (1.2.2), it is enough to verify this for ¢, and
HF" where F' € Shy, F" € Shy. The collection of sheaves i~ P,, being a complete set
of indecomposable projectives of Shy, generates D?(Y'). Similarly, the sheaves j 11, form a
complete set of indecomposable injectives of Shy; and generate D°(U). Now the result follows
by applying the triangulated functors 7., j. O

1.4.3 The endomorphism algebras Ay

Fix a poset X, and let Y C X be a closed subset. Consider Ty = (@yeyﬁy) @ (Bucv (1]
and let Ay = Endps(x) Ty. By Theorem 1.4.2 and Proposition 1.4.5, we have:

Corollary 1.4.6. D*(X) ~ D°(Ay).
Proposition 1.4.7. The algebra Ay has as a k-basis the elements

{egy 1y <y} U{ews : v <u}U{ey : y<u}
where y,y' € Y, u',u € U. The multiplication is defined by

ny/ ey/y// = eyy// Eully! Culu = Eully
euy Y <u cwy y<u
CuyCyy’ = . CuuCuy = .
0 otherwise 0 otherwise

fory <y <y eV, u < <wu e U (all other products are zero).

Proof. Fory <y € Y, using (1.4.7), choose e, € Hom(ﬁy/,ﬁy) corresponding to 1 €
ﬁy(y/ ). In other words, the stalk of the morphism e, at 3 is the identity map on k. Then
Cyy Cyryr = €y fory <y <y €Y.

Similarly, for u/ < u € U, using (1.4.8), choose e, € Hom(I,[1],1,/[1]) corresponding
tol e fu(u’ ). The stalk of e, at u’ is the identity map on k and we have e,y ey, = €y, for
allu’ <o <uel.

Now consider y € Y and v € U such that y < w. Using the isomorphisms (1.4.10)
and (1.4.12), we have

Hom(jij ' P, I,) — Hom(ﬁy, LJ1]) <— Hom(ﬁy, iviml1,)
G R (i L) )

There are unique ey, €yy € Hom(]By, I,[1]) such that the image of euy in (j17 1P (u)
equals 1 and the image of €, in (i+i~'1,)(y) is 1. The formula for e,/ €y, Where u’ < u now
follows by considering the composition

Hom(jij ' P,, I,) — Hom(P,, I,[1]) 3 ey

eu’uol

Hom(jij ' Py, Iy) —> Hom(ﬁy, L/[1]) 3 Culy
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The formula for e,y ey, would follow in a similar manner by considering the composition
— 0 ey, once we know that the scalar ratio between €uy and e,y is independent of u and y.

Indeed, replacing the objects ]5y and fu[l] by the quasi-isomorphic complexes (j1j 1P, —
P,)[1] and (I, — i.i~11,)[1], we see that Hom(ﬁy, I,[1]) equals the set of morphisms (), 1)
between the two complexes

00— Py = by 0
l)\ Phd - J{u
0 I~ Gai V[, —— 0 — -

modulo homotopy. Note that (A, 1) ~ (X, u) if and only if A — u = X\ — x/. The morphism

ey corresponds to the pair (1,0) while €, corresponds to (0, 1), hence €, = —ey,.
It is clear that the elements constructed above form a k-basis of Ay and satisfy the required
relations. O

Example 1.4.8. Let X be the poset with Hasse diagram as in the left picture, and let Y = {1}.
The algebra Ay is shown in the right picture, as the path algebra of the quiver A3 modulo the
zero relation indicated by the dotted arrow (i.e. the product of 2 — 3 and 3 — 1 is zero).

23—l

1 2
NS
3

Lemma 1.4.9. Let X' = U UY and define a binary relation <' on X' by

W< ued<u y<Iyey<y udysy<u (1.4.13)

foru,u' € U, y,y €Y. Then < is a partial order if and only if the following condition holds:
Whenevery <y’ €Y, u' <u € U and y < u, we have that y' < u’. %)

When this condition holds, the endomorphism algebra Ay is isomorphic to the incidence
algebra of (X', <').

Proof. The first part is clear from the requirement of transitivity of <.
The condition (%) implies that e, €yy = €y and eyyey, = ey, whenever v’ < u,y < ¢/
and y < u, so that Ay is the incidence algebra of (X', <'). O

1.4.4 Lexicographic sums along bipartite graphs

Definition 1.4.10. Let S be a poset, and let X = {X }.cs be a collection of posets indexed
by the elements of S. The lexicographic sum of X along S, denoted ®gX, is the poset (X, <)
where X = [], g X, is the disjoint union of the X and for x € X,, y € X; we have z < y if
either s <t (inS)ors =tand x < y (in Xj).
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Example 1.4.11. The usual ordinal sum X1 ® Xo @ --- @ X,, of n posets is the lexicographic
sumof {X1,..., X, } alongthechain1 <2 < --- < n.

Definition 1.4.12. A poset .S is called a bipartite graph if it can be written as a disjoint union of
two nonempty subsets Sy and S such that s < s’ in S implies that s € Sp and s’ € Sy.

It follows from the definition that the posets Sy, S are anti-chains, that is, no two distinct
elements in Sy (or Sp) are comparable.

Example 1.4.13. The left Hasse diagram represents a bipartite poset S. The right one is the
Hasse diagram of its opposite SP.

Let X = {X1, X2, X3, X4, X5} be the collection

0 N X

The graphs shown below are the Hasse diagrams of ®gX (left) and @ gor X (right).

A
/

oy »
X
\

AN
NN
< /

Theorem 1.4.14. If S is a bipartite graph and X = {X}scs is a collection of posets, then
PgX ~ BgorX.

Proof. Let S = SpI1.S; be a partition as in the definition of bipartite poset. Let Xo = { X }ses,»
X1 = {Xs}ses, andlet X = X, Y = ®g, X0, U = &g, X1. The sets Y and U can be viewed
as disjoint subsets of X with X =Y U U. Moreover, since there are no relations s; < so with
so € Sp, 81 € S1, there are no relations v < y withy € Y, u € U, thus Y is closed and U is
open in X. By Corollary 1.4.6, D*(X) ~ D’(Ay) where Ay is the endomorphism algebra of
the direct sum of the strongly exceptional collection of Proposition 1.4.5.

We show that the condition (x) of Lemma 1.4.9 holds. Indeed, lety <3 € Y, v <u e U.
There exist s, 5o € So, 51,8 € S1suchthaty € X,y € X, u € X, and v’ € X;. Now,
s = sp and s} = sy since y < ¢/, v’ < wand Sp, S; are anti-chains. If y < u, then 59 < s1,
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hence 3/ < v’ and (%) is satisfied. Therefore Ay is the incidence algebra of the poset X’ defined
in (1.4.13).

Since X' is a disjoint union of the posets U and Y with the original order inside each but
with reverse order between them, it is easy to see that X’ equals the lexicographic sum of X
along the opposite poset SP. O

Corollary 1.4.15. Let X,Y be two posets. Then X @Y ~Y & X
Proof. Take S to be the chain 1 < 2. 0

As special cases, we obtain the following two well known examples.

Example 1.4.16. The following two posets (represented by their Hasse diagrams) are derived
equivalent.

N N
NS g

The right poset is obtained from the left one by an APR tilt [3], see also [35, (II1.2.14)].

Example 1.4.17. The two posets below are derived equivalent.

This is a special case of BGP reflection [9], turning a source into a sink (and vice versa).
Corollary 1.4.18. Let S be a bipartite graph. Then S ~ S°P.

Proof. Take in Theorem 1.4.14 each X to be a point. O

Note that the last Corollary can also be deduced from [9] since Shg is the category of
representations of a quiver without oriented cycles, namely the Hasse diagram of .S, and S°? is
obtained from S by reverting all the arrows.

1.4.5 Ordinal sums of three posets

The result of Corollary 1.4.15 raises the natural question whether the derived equivalence class
of an ordinal sum of more than two posets does not depend on the order of the summands. The
following proposition shows that it is enough to consider the case of three summands.
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XaYopZ YeXpZ

Figure 1.1: Two posets which are not derived equivalent despite their structure as ordinal sums
of the same three posets in different orders.

Proposition 1.4.19. Let X be a family of posets closed to taking ordinal sums. Assume that for
any three posets X, Y, Z € X,

XoYaZ~YOXOZ (1.4.14)
Then foranyn > 1, m € Sy, and X1, ..., X, € X,
X7r(1)@"'@X7r(n)NXI@"'@Xn

Proof. For n = 1 the claim is trivial and for n = 2 it is just Corollary 1.4.15. Let n > 3 and
consider the set G, of permutations in 7 € Sy, such that X (1)®- - - ® X,y ~ X1 - -® X, for
all X1,..., X, € X. Then G, is a subgroup of S, and the claim to be proved is that G,, = .5,.

Let Xy,...,X, € X.Taking X = XjandY = X» & - X,,, we see by Corollary 1.4.15
that the cycle (12 ... n) belongs to G,,. Now take X = X7, Y = Xoand Z = X3P --- @ X,,.
By (14.14), Y d X & Z ~ X @Y @ Z, hence (12) € Gy,. The claim now follows since (1 2)
and (12 ... n) generate S,,. O

We give a counterexample to show that (1.4.14) is false in general.

Example 1.4.20. Let

oe<—0

X = o ° ° Y
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andlet Z = X @Y. Then the posets X Y & Z and Y b X & Z, depicted in Figure 1.1, are not
derived equivalent since their Euler forms are not equivalent over Z (they are equivalent over Q,
though). This is shown using Corollary 1.3.15 with the prime p = 11.

24



Chapter 2

Derived Equivalences of Triangular
Matrix Rings Arising from Extensions
of Tilting Modules

A triangular matrix ring A is defined by a triplet (R, S, M) where R and S are rings and p Mg is
an S-R-bimodule. In the main theorem of this chapter we show that if Ts is a tilting S-module,
then under certain homological conditions on the S-module Mg, one can extend T’ to a tilting
complex over A inducing a derived equivalence between A and another triangular matrix ring
specified by (S’, R, M'), where the ring S’ and the R-S’-bimodule M’ depend only on M and
Ts, and S’ is derived equivalent to S. Note that no conditions on the ring R are needed.

These conditions are satisfied when S is an Artin algebra of finite global dimension and Mg
is finitely generated. In this case, (S’, R, M') = (S, R, DM) where D is the duality on the
category of finitely generated S-modules. They are also satisfied when S is arbitrary, Mg has
a finite projective resolution and Ext¢(Mg, S) = 0 for all n > 0. In this case, (S’, R, M') =
(S, R,Homg (M, S)).

2.1 Introduction

Triangular matrix rings and their homological properties have been widely studied, see for ex-
ample [19, 27, 29, 67, 70]. The question of derived equivalences between different such rings
was explored in the special case of one-point extensions of algebras [5]. Another aspect of this
question was addressed by considering examples of triangular matrix algebras of a simple form,
such as incidence algebras of posets, as we have done in Chapter 1. In this chapter we extend
the results of the previous chapter to general triangular matrix rings.

A triangular matrix ring A is defined by a triplet (R, S, M) where R and S are rings and
rMg is an S-R-bimodule. The category of (right) A-modules can be viewed as a certain gluing
of the categories of R-modules and S-modules, specified by four exact functors. This gluing
naturally extends to the bounded derived categories. We note the similarity to the classical “rec-
ollement” situation, introduced by Beilinson, Bernstein and Deligne [7], involving six functors
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between three triangulated categories, originally inspired by considering derived categories of
sheaves on topological spaces, and later studied for derived categories of modules by Cline,
Parshall and Scott [21, 22], see also [55].

In Section 2.2 we show that triangular matrix rings arise naturally as endomorphism rings
of certain rigid complexes over abelian categories that are glued from two simpler ones. Here, a
complex T € D°(C) is rigid if Homgpe ) (T, T'[n]) = 0 for all n # 0, where D*(C) denotes the
bounded derived category of an abelian category C. Similarly, an object T' € C is rigid if it is
rigid as a complex.

Indeed, when C is glued from the abelian categories .4 and BB, we construct, for any projective
object of .4 and a rigid object of B satisfying some homological conditions, a new rigid complex
in D(C) whose endomorphism ring is a triangular matrix ring.

In particular, as demonstrated in Section 2.3, this construction applies for comma categories
defined by two abelian categories A, B and a right exact functor F' : A — B. In this case, any
projective P of A and a rigid object Tz € B satisfying Extj;(F P,Tg) = 0 for all n > 0, give
rise to a rigid complex 7' over the comma category, whose endomorphism ring is a triangular
matrix ring which can be explicitly computed in terms of P, Tz and F'P, as

_ (Endg(Tp) Homp(FP,Tg)
EHdDb(C) (T) =~ ( 0 EHdA(P) .

In Section 2.4 we apply this construction for categories of modules over triangular matrix
rings. For a ring A, denote by Mod A the category of all right A-modules, and by D’(A) its
bounded derived category. Recall that a complex 7" € D°(A) is a tilting complex if it is rigid and
moreover, the smallest full triangulated subcategory of D°(A) containing 7" and closed under
forming direct summands, equals per A, the full subcategory in D?(A) of complexes quasi-
isomorphic to perfect complexes, that is, bounded complexes of finitely generated projective
A-modules. If, in addition, H"(T") = 0 for all n # 0, we call T a tilting module and identify it
with the module H'(T).

Two rings A and A’ are derived equivalent if D?(A) and D°(A’) are equivalent as triangulated
categories. By Rickard’s Morita theory for derived equivalence [73], this is equivalent to the
existence of a tilting complex 7" € D°(A) such that Endps ) (T) = A

When A is a triangular matrix ring defined by two rings R, S and a bimodule p Mg, the
category Mod A is the comma category of Mod R, Mod S with respect to the functor — ® M :
Mod R — Mod S. In this case, starting with the projective R-module R and a tilting S-module
Tg, the complex T constructed in Section 2.3 is not only rigid, but also a tilting complex, hence
we deduce a derived equivalence between A and the triangular matrix ring Endps ) (T), as
expressed in the theorem below.

Theorem. Let R, S be rings and T a tilting S-module. Let Mg be an S-R-bimodule such
that as an S-module, Mg € per S and Ext§(Mg,Ts) = 0 for all n > 0. Then the triangular
matrix rings

(R M ~  (Endgs(Ts) Homg(M,Ts)
A—<O S> and A—< 0 R

are derived equivalent.
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We note that the assumption that T is a tilting module implies that the rings S and
Endg(Ts) are derived equivalent, hence the triangular matrix ring specified by the triplet
(R, S, M) is derived equivalent to a one specified by (S’, R, M) where S’ is derived equiv-
alent to S. We note also that no conditions on the ring R (or on M as a left R-module) are
necessary.

The above theorem has two interesting corollaries, corresponding to the cases where T is
injective or projective.

For the first corollary, let S be an Artin algebra, and let D : mod S — mod S°P denote the
duality. When S has finite global dimension, one can take 7Ts to be the module D.S which is
then an injective tilting module.

Corollary. Let R be a ring, S an Artin algebra with gl.dim S < oo and r Mg an S-R-bimodule
which is finitely generated as an S-module. Then the triangular matrix rings

R M ~ S DM
A_<O S> and A—<0 R)

are derived equivalent, where D is the duality on mod S.

The ring A depends only on R, S and M, hence it may be considered as a derived equivalent
mate of A.

The second corollary of the above theorem is obtained by taking the tilting S-module to be

S.

Corollary. Let R, S be rings and rMg an S-R-bimodule such that as an S-module, Mg €
per S and Ext'§(Mg, S) = 0 for all n > 0. Then the triangular matrix rings

- R M o S HomS(M,S)
A_(O S) and A_<O I >

are derived equivalent.

This corollary applies to the following situations, listed in descending order of generality; the
ring S is self-injective (that is, S is injective as a module over itself) and Mg is finitely generated
projective; the ring S' is semi-simple and Mg is finitely generated; the ring S is a division ring
and M is finite dimensional over S. The latter case implies that a triangular matrix ring which
is a one-point extension is derived equivalent to the corresponding one-point co-extension.

In Section 2.5 we conclude with three remarks concerning the specific case of finite dimen-
sional triangular matrix algebras over a field.

First, in the case when R and S are finite dimensional algebras over a field and both have
finite global dimension, an alternative approach to show the derived equivalence of the triangular
matrix algebras specified by (R, S, M) and its mate (S, R, DM) is to prove that the correspond-
ing repetitive algebras are isomorphic and then use Happel’s Theorem [35, (I1,4.9)]. However,
in the case that only one of R and S has finite global dimension, Happel’s Theorem cannot be
used, but the derived equivalence still holds. Moreover, as we show in Example 2.5.3, there are
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cases when none of R and S have finite global dimension and the corresponding algebras are
not derived equivalent, despite the isomorphism between their repetitive algebras.

Second, one can directly prove, using only matrix calculations, that when at least one of R
and S has finite global dimension, the Cartan matrices of the triangular matrix algebra (R, S, M)
and its mate are equivalent over Z, a result which is a direct consequence of Theorem 2.4.9.

Third, we note that in contrast to triangular matrix algebras, in the more general situation of
trivial extensions of algebras, the mates A x M and A x DM for an algebra A and a bimodule
AM 4, are typically not derived equivalent.

2.2 The gluing construction

Let A, B, C be three abelian categories. Similarly to [7, (1.4)], we view C as glued from A and
BB if there exist certain functors i ', 4,,j !, j as described below. Note, however, that we start
by working at the level of the abelian categories and not their derived categories. In addition,
the requirement in [7] of the existence of the additional adjoint functors 7', j, is replaced by the
orthogonality condition (2.2.6).

Definition 2.2.1. A quadruple of additive functors i !, ,, 5!, ji as in the diagram

it Jr

is called gluing data if it satisfies the four properties below.

Adjunction

i1 is a left adjoint of 7, and j—

isomorphisms

1is a right adjoint of ji. That is, there exist bi-functorial

Hom (i~ 1C, A) ~ Home(C, i, A) (2.2.1)
Hompg(B,j~'C) ~ Home (51 B, C) (2.2.2)

forall A € ob A, B €obB,C € obC(C.

Exactness

The functors i ', 4., ', ji are exact.
Note that by the adjunctions above, we automatically get that the functors i, j " are left
exact while i~!, ji are right exact.

Extension

For every C' € ob(C, the adjunction morphisms 5 'C — C and C — i,i~'C give rise to a
short exact sequence
0—jj '1C—C—iitC—0 (2.2.3)
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Orthogonality

it = i li, =0 (2.2.4)
iV, ~Idy 575 ~ 1dg (2.2.5)

and in addition,
Home (i A, 1B) =0 forall A€ ob A, Be€obB (2.2.6)

Using the adjunctions (2.2.1) and (2.2.2), the assumptions of (2.2.4),(2.2.5) can be rephrased
as follows. First, the two conditions of (2.2.4) are equivalent to each other and each is equivalent
to the condition

Home (jiB,ixA) =0 forall A€ ob A, B €obB 2.2.7)

Similarly, the conditions in (2.2.5) are equivalent to the requirement that i, and j are fully
faithful functors, so that one can think of .4 and B as embedded in C. Moreover, from (2.2.3)
and (2.2.7) we see that (B,.A) is a forsion pair [41, (1.2)] in C.

Observe also that (2.2.6) could be replaced with the assumption that the functor (z"l ] _1) :
C — A x B is faithful. Indeed, one implication follows from (2.2.4) and (2.2.5), and the other
follows using (2.2.3).

From now on assume that (i =%, i,, 5!, j1) form a gluing data.

Lemma 2.2.2. If P is a projective object of C, then i~ P is projective in A. Similarly, if I an
injective object of C, then j~'I is injective in BB.

Proof. A functor which is a left adjoint to an exact functor preserves projectives, while a right
adjoint to an exact functor preserves injectives [29, Corollary 1.6]. O

The exact functors i1, i,, 771, ji give rise to triangulated functors between the correspond-
ing bounded derived categories. We use the same notation for these derived functors:

-1

DY(A) : D*(C) ___ Db(B)
i1 J

Note that adjunctions and orthogonality relations analogous to (2.2.1), (2.2.2), (2.2.4), (2.2.5)
(but not (2.2.6)) hold also for the derived functors. In particular, i, and j are fully faithful.

Definition 2.2.3. An object 7" in an abelian category A is called rigid if Ext"y (T, T") = 0 for all
n > 0.

Proposition 2.2.4. Let P be a projective object of C and Tg be a rigid object of B such that
Ext?;(j_lp, Tg) = 0 for all n > 0. Consider the complex

T =i 'P®jTpl]
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in D°(C). Then Hompy () (T, T[n]) = 0 for n # 0 and

_ (Endg(Tg) Exti(ivi'P,jiTg)
EndDb(C)(T)‘( 0 End4(i"'P)

is a triangular matrix ring.

Proof. Since T has two summands, the space Home(c)(T, T'[n]) decomposes into four parts,
which we now consider.
Since 14, is fully faithful and i ~! P is projective,

Homps oy (i4i~ " P, ivi~ " Pln]) ~ Homps( 4)(i " P,i~" P[n]) (2.2.8)
vanishes for n # 0. Similarly, since ji is fully faithful and T3 is rigid,
Hompe ¢y (1T, ' Ti[n]) ~ Hompy ) (15, T([n))
vanishes for n # 0. Moreover, by orthogonality,
Homqpy ¢y (118, ii " Pln]) = 0

foralln € Z.

It remains to consider Hompy ) (44" P, jiTs[n]) and to prove that it vanishes for n # 1.
Using (2.2.3), we obtain a short exact sequence 0 — jij ' P — P — i,i~'P — 0 that induces
a long exact sequence, a fragment of which is shown below:

Homps (5" P, T[n — 1]) ~ Hompy ) (jrj ' P[1], 1 Ts[n]) — 229
Homps ¢y (ixi~ ' P, jiTp[n]) — Hompec) (P, 51 T5[n]). B

Now observe that the right term vanishes for n # 0 since P is projective, and the left term
of (2.2.9) vanishes for n # 1 by our assumption on the vanishing of Ext%(j 1P, T). Therefore

HOIHDb(C) (Z.*Z._lpa ]'TB[n]) =0

for n # 0, 1. This holds also for n = 0 by the assumption (2.2.6).
To complete the proof, note that Exté(i*i_lP, jiTp) has a natural structure of an
End 4 (i~ P)-Endg(T)-bimodule via the identifications

End4 (i 'P) ~ Ende(i,i 1 P) Endg(T5) ~ Ende (j1T3)
O

Remark 2.2.5. The assumptions in the proposition are always satisfied when P is a projective
object of C and T} is any injective object of .

Remark 2.2.6. One can formulate an analogous statement for a rigid object 7’4 of A and an
injective object I of C.
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2.3 Gluing in comma categories

Let A, B be categories and F' : A — B a functor. The comma category with respect to the pair
of functors A 2 B &L B [65, 11.6], denoted by (F' | Id), is the category C whose objects are
triples (A, B, f) where A € ob A, B € obBand f : FA — B is a morphism (in B). The
morphisms between objects (A, B, f) and (A’, B, f’) are all pairs of morphisms o : A — A’,
(3 : B — B’ such that the square

raA— - p 2.3.1)
\LFO[ iﬂ
/ f/ /
FA'——B
commutes.

Assume in addition that A, B are abelian and that F' : A — B is an additive, right exact
functor. In this case, the comma category C is abelian [29]. Consider the functors

defined by
ix(A) = (4,0,0)  iu(a) = (a,0) iNABf)=A  iYaf)=a
]|(B):(O,B,O) ]'(ﬁ):(ovﬁ) j_l(A7B7f):B ]_l(avﬁ):ﬂ

for objects A € ob A, B € ob BB and morphisms «, 3.
Lemma 2.3.1. The quadruple (i~',i.,j~1, ji) is a gluing data.

Proof. We need to verify the four properties of gluing data. The adjunction follows by the
commutativity of the diagrams

FA-1-p 0

B
e |
FA —>0 AL

fora:A— A and8: B — B’

For exactness, note that kernels and images in C can be computed componentwise, that is, if
(o, B3): (A, B, f) — (A’, B', ") is amorphism in C, then ker(c, 8) = (ker a, ker B, f|rera))
and similarly for the image. The extension condition follows from

0— (0,B,0) 22, (4 B, ) U2 (4,0,0) — 0

and orthogonality is straightforward. 0
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One can use the special structure of the comma category C to define another pair of functors.
Let i : A — C and j% : C — B be the functors defined by

iW(A) = (A, FA,1p4) i) = (a, Fa)
J*(A, B, f) = coker f i, p) =7
where 3 : coker f — coker f’ is induced from f3.
Lemma 2.3.2. i is a left adjoint of i~ j% is a left adjoint of ji, and
iV ~ Tdy iV =F j%i = 4%, =0 % ~ 1dg

Proof. The adjunctions follow by considering the commutative diagrams

FA—FA pA FA-L-p
lFoa lﬁ:f’oFa i \Lﬁ
FA/f*>B, OHB/

and noting that the commutativity of the right diagram implies that 3 factors uniquely through
coker f. The other relations are straightforward. O

Remark 2.3.3. The diagram

(ir,51) (i71.5%)
Ax B C AxB

(i~ )
is a special case of the one in [29, p. 7], viewing C as a trivial extension of A x B.

Proposition 2.3.4. Let P be a projective object of A and Tg be a rigid object of B such that
Ext}(FP,Tg) = 0 for all n > 0. Assume that FP € ob(B) has a projective resolution in B
and consider T = (P,0,0) @ (0,T5,0)[1] € D*(C). Then Hompy ey (T, T[n]) = 0 forn # 0
and
_ (Endp(Tp) Homp(F'P,Tg)
Endps c)(T) = ( 0 Endu(P) )’

where the bimodule structure on Homp(F P, Tg) is given by left composition with Endg(Tg)
and right composition with Endg(F P) through the natural map End 4(P) — Endg(F' P).

Proof. Since 1, is a left adjoint of an exact functor, it takes projective objects of A to projective
objects of C. Hence iy P = (P, F'P, 1rp) is projective and we can apply Proposition 2.2.4 for i, P
and Tp. As (P,0,0) = i,i~ %P and (0,T5,0) = 5iT5, we only need to show the isomorphism

Ext{ ((P,0,0),(0,T5,0)) ~ Homg(F P, Tp)

as End 4(P)-Endg(Tg)-bimodules.
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Indeed, let
5 QP Q' - FP—0 (2.3.2)

be a projective resolution of F'P. Then (P, 0, 0) is quasi-isomorphic to the complex
..Hj!QQHj!QIHi!PHOH...

whose terms are projective since ji is a left adjoint of an exact functor. Therefore
Ext5((P,0,0),(0,75,0)) can be identified with the morphisms, up to homotopy, between the
complexes

§1Q? H1Q* P 0 e (2.3.3)

0 115 0 0

By Lemma 2.3.2, Home (4 P, jiT5) = Hom(P,i~'jT) = 0, thus any homotopy be-
tween these complexes vanishes, and the morphism space equals ker(Home(51Q', 71T5) —
Home (51Q?, iT)).  Using the fact that j, is fully faithful and applying the functor
Homp(—,Tp) on the exact sequence (2.3.2), we get that the morphism space equals
Hompg(F P, Tp), as desired.

Under this identification, the left action of Endg(73) ~ End¢(jiTR) is given by left com-
position. As for the right action of End 4(P), observe that any o € End 4(P) extends uniquely
to an endomorphism in the homotopy category

(OaF-Puo)ﬂ))(P)FP71FP)

i(O,Fa) i(a,Fa)
(0, FP,0) ) (P,FP,1pp)

which determines a unique endomorphism, in the homotopy category, of the top complex
of (2.3.3). O

Remark 2.3.5. When the functor F' : A — B admits a right adjoint G : B — A, the comma
category (F' | Id) is equivalent to the comma category (Id | G) corresponding to the pair

A 4 E B In this case, one can define also a right adjoint ' of i, and a right adjoint j,
of 71, and we end up with the eight functors (iy,i!,,,4') and (%, ji, !, j.). The bimodule
Hompg(F P, Tp) in Proposition 2.3.4 can then be identified with Hom 4 (P, GT3).

2.4 Application to triangular matrix rings

2.4.1 Triangular matrix rings

Let R and S be rings, and let g Mg be an S-R-bimodule. Let A be the triangular matrix ring

A—<§ Ag)-{(g T:) :reR,SGS,mEM} 2.4.1)
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where the ring structure is induced by the ordinary matrix operations.

For a ring R, denote the category of right R-modules by Mod R. The functor — ® M :
Mod R — Mod S is additive and right exact, hence the corresponding comma category (— ®
M | Idyioq r) is abelian.

Lemma 2.4.1 ([4, II1.2]). The category Mod A is equivalent to the comma category (— @ M |
Idnod R)-

Proof. One verifies that by sending a triple (Xg, Ys, f : X ® M — Y') to the A-module X &Y
defined by

(z ) (g T) = (ar flz@m)+ys) (2.4.2)

and sending a morphism (o, 3) : (X,Y, f) - (X", Y, fHtoadf: XY - X' @Y, we
get a functor (— ® M | Idyoq ) — Mod A which is an equivalence of categories. O

Corollary 2.4.2. There exists gluing data

. 1
Uk J

Mod R _ Mod A ' Mod S.

i1 N

The functors occurring in Corollary 2.4.2 can be described explicitly. Let

_(1 0 (00
‘R=\p o) =\ 1)

Using (2.4.2), observe that for a A-module Z,,

(i7'Z)r = Zeg (j712)s = Zeg (2.4.3)

where r acts on i~'Z via (3 J) and s acts on j~'Z via (J?). The morphism (i71Z) ®
M — j~'Z is obtained by considering the actions of (J%'), m € M, and the map Z +
(i7'Z,57'Z,(i7'Z) @ M — j—'Z) defines a functor which is an inverse to the equivalence of
categories constructed in the proof of Lemma 2.4.1.

Conversely, for an R-module X i and S-module Yg, we have (i, X )y = X and (7#iY)a =Y

where (( ;') acts on X viar andonY via s.
Lemma 2.4.3. The image of A in the comma category equals (R, M, 1) @ (0, .5,0).

Proof. Use (2.4.3) and
10 R 0 00 0 M
A<o 0>:<o 0>’ A(o 1>:<0 S)’
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Remark 2.4.4. Since — ® M admits a right adjoint Hom(M, —), we are in the situation of
Remark 2.3.5 and there are eight functors (4,371, i, ') and (5%, j1, 571, 7. ). For the convenience
of the reader, we now describe them as standard functors ® and Hom involving idempotents,
see also [22, Section 2] and [69, Proposition 2.17].

If Aisaring and e € A is an idempotent, the functor

Homy(eA,—) = — ®4 Ae : Mod A — Mod eAe

admits a left adjoint — ®.4. €A and a right adjoint Hom, 4.(Ae, —). By taking A = A and
e = e we get the three functors (4,7 ', i,). Similarly, e = eg gives (j1, 5%, j«).
In addition, the natural inclusion functor

Homy/pea(A/AeA, =) = — @444 A/AeA : Mod A/AeA — Mod A
admits a left adjoint — ® 4 A/AeA and a right adjoint Hom 4(A/AeA, —). By taking A = A

and e = e, observing that egAer = 0, we get the three functors (5%, j1, j~!). For e = eg we
R |
get (177, iy, 7).

2.4.2 The main theorem

For a ring A, denote by D?(A) the bounded derived category of Mod A, and by per A its full
subcategory of complexes quasi-isomorphic to perfect complexes, that is, bounded complexes of
finitely generated projective A-modules.

For a complex T € D’(A), denote by (add T') the smallest full triangulated subcategory
of DY(A) containing T" and closed under forming direct summands. Recall that 7T is a tilting
complex if (add T') = per A and Hompy () (7', T'[n]) = 0 for all integers n # 0. If, moreover,
H™(T) = 0 for all n # 0, we call T a tilting module and identify it with the module H°(T).

Theorem 2.4.5. Let R, S be rings and T a tilting S-module. Let Mg be an S-R-bimodule
such that as an S-module, Mg € per S and Ext4(Mg,Ts) = 0 for all n > 0. Then the
triangular matrix rings

(R M ~  (Endgs(Ts) Homg(M,Ts)
A_<O S> and A—< 0 I

are derived equivalent.

Proof. For simplicity, we shall identify Mod A with the corresponding comma category. We
will show that T = (R, 0,0) @ (0, Ts, 0)[1] is a tilting complex in D°(A) whose endomorphism
ring equals A.

Applying Proposition 2.3.4 for the projective R-module R and the rigid S-module 7s, noting
that R = Mg and Ext§(Mg,Ts) = 0 for n > 0, we see that Hompy(x (T', T'[n]) = 0 for all
n # 0 and moreover Endpp () (7') =~ A.

It remains to show that (add7’) = per A. First, we show that 7' € per A. Observe that
Ji(per S) C per A, since ji is an exact functor which takes projectives to projectives and 5.5 =
(0,5,0) is a direct summand of A. Hence in the short exact sequence

0 — (0,M,0) — (R, M,15) — (R,0,0) — 0, (2.4.4)
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we have that (0, M, 0) € per A by the assumption that Mg € per S, and (R, M, 1)) € per A
as a direct summand of A. Therefore (R, 0,0) € per A. In addition, (0,7s,0) € per A by the
assumption T € per S, hence T is isomorphic in D?(A) to a perfect complex.

Second, in order to prove that (add7T") = per A it is enough to show that A € (addT).
Indeed, since (0,7, 0)[1] is a summand of T, by the exactness of j; and our assumption that
(add Ts) = per S, we have that (0,.5,0) € (addT') and (0, M, 0) € (add T'). Since (R, 0,0) is
a summand of T, by invoking again the short exact sequence (2.4.4) we see that (R, M, 1) €
(add T"), hence A € (add T)).

__ Therefore T is a tilting complex in D’(A), and by [73] (see also [51, (1.4)]), the rings A and
A ~ Endpe () (T) are derived equivalent. O

Remark 2.4.6. The assumption that T is a tilting module implies that the rings S and
Endg(Tys) are derived equivalent.

Remark 2.4.7. When the tilting module 75 is also injective, it is enough to assume that Mg €
perS.

2.4.3 Applications

Let S be an Artin algebra over an Artinian commutative ring %, and let mod .S be the category
of finitely generated right S-modules. Let D : Mod .S — Mod S be the functor defined by
D = Homy(—, J), where J is an injective envelope of the direct sum of all the non-isomorphic
simple modules of k. Recall that D restricts to a duality D : mod .S — mod S°P. Applying it
on the bimodule gSg, we get the bimodule s DSs = Homy (S, J).

Lemma 2.4.8. Let R be a ring and r Mg a bimodule. Then s DMp ~ Homg(rMsg, sDSs) as
R-S-bimodules.

Proof. By the standard adjunctions,
HOHlS(RMSa Homk(sss, J)) ~ Homk(RMs ®g Ss, J) = Homk(RMs, J).
]

It follows that D = Homg(—, DSs), hence DS is an injective object in Mod S. We denote
by gl.dim S the global dimension of mod S.

Theorem 2.4.9. Let R be a ring, S an Artin algebra with gl.dim S < oo and pMg an S-R-
bimodule which is finitely generated as an S-module. Then the triangular matrix rings

R M ~ S DM
A= (0 S) and A= (0 R )
are derived equivalent, where D is the duality on mod S.
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Proof. The module DSg is injective in Mod S and any module in mod .S has an injective reso-
lution with terms that are summands of finite direct sums of DS. Since gl.dim S < oo, such a
resolution is finite, hence (add D.S) = per S and M € per S for any M € mod S.

Therefore the assumptions of Theorem 2.4.5 are satisfied for T = DJS (see also Re-
mark 2.4.7), and it remains to show that Endg(7s) = S and Homg(M,Ts) ~ sDMp (as
bimodules). This follows by the Lemma 2.4.8 applied for the bimodules ¢DSg and pMg. [

Remark 2.4.10. Under the assumptions of Theorem 2.4.9, when R is also an Artin k-algebra
and k acts centrally on M, the rings A and A are Artin algebras and the derived equivalence in
the theorem implies that D?(mod A) ~ D’(mod A).

Moreover, by using the duality D, one sees that Theorem 2.4.9 is true for two Artin algebras
R and S and a bimodule p Mg on which k acts centrally under the weaker assumptions that M
is finitely generated over k and at least one of gl.dim R, gl.dim S is finite.

By taking Ts = .S in Theorem 2.4.5, we get the following corollary.

Corollary 2.4.11. Let R, S be rings and rMg an S-R-bimodule such that as an S-module,
Mg € per S and Ext§(Mg, S) = 0 for all n > 0. Then the triangular matrix rings

_ (R M ~ _ (S Homg(M,S)
A—<0 S> and A—<0 = )

are derived equivalent.

Remark 2.4.12. The conditions of Corollary 2.4.11 hold when the ring S is self-injective, that
is, S is injective as a (right) module over itself, and rp Mg is finitely generated projective as an
S-module. In particular, this applies when S is a semi-simple ring and M is finitely generated
as an S-module.

Remark 2.4.13. Recall that for a ring R, a division ring .S and a bimodule g/Nr which is finite
dimensional as a left S-vector space, the one-point extension R[N | and the one-point coextension
[N]R of R by N are defined as the triangular matrix rings

W) (i)

where D = Homg(—, S) is the duality on mod S. By taking M = DN in the preceding remark,
we see that the rings R[N] and [IV] R are derived equivalent. Compare this with the construction
of “reflection with respect to an idempotent” in [83].

2.5 Concluding remarks

2.5.1 Repetitive algebras

In the specific case of Artin algebras, another approach to the connection between a triangular
matrix algebra A and its mate A involves the use of repetitive algebras, as outlined below.
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Let A be an Artin algebra over a commutative Artinian ring k and let D : mod k — mod k be
the duality. Recall that the repetitive algebra A of A, introduced in [46], is the algebra (without
unit) of matrices of the form

DA, 4 0
0 A; DA; 0
0 Aiv1 DAy

0

=)
Il

where A; = A, DA; = DA for ¢ € Z, and only finite number of entries are nonzero. The
multiplication is defined by the canonical maps A ®y DA — DA, DA ®x A — DA induced by
the bimodule structure on DA, and the zero map DA ®, DA — 0.

When A is a triangular matrix algebra, one can write

R M DR 0
A‘(o S) DA_(DM DS>
and a direct calculation shows that the maps A ® DA — DA and DA ® A — DA are given by

multiplication of the above matrices, under the convention that M ® ¢ D.S — 0 and DRQr M —
0.

As for the mate 1~X, we have
~ S DM ~ DS 0
A_<() R) DA_(M DR)’

therefore the repetitive algebras of A and its mate A have the form

*. DM DS . M DR
R M DR R S DM DS
~ S DM DS = R M DR
A= R DR , A= S DM DS
S DM DS R M DR
S DM

and are thus clearly seen to be isomorphic.

When £k is a field and both algebras R and S have finite global dimension, this can be
combined with Happel’s Theorem [35, (I1.4.9)] to deduce that A and its mate A are derived
equivalent.

Note, however, that for the derived equivalence between A and A to hold, it is enough to
assume that only one of R, S has finite global dimension (see Remark 2.4.10).

Moreover, while the repetitive algebras of A and A are always isomorphic, in the case where
none of R, S have finite global dimension, the algebras A and A may not be derived equivalent,
see Example 2.5.3 below.
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2.5.2 Grothendieck groups

In this subsection, k denotes an algebraically closed field. Let A be a finite dimensional
k-algebra and let Pj,..., P, be a complete collection of the non-isomorphic indecompos-
able projectives in mod A. The Cartan matrix of A is the n x n integer matrix defined by
Cij = dlmk HOIH(B, PJ)

The Grothendieck group Ko(per A) of the triangulated category per A can be viewed as a
free abelian group on the generators [P;], ..., [P,], and the Euler form

(K, L) =" (~1)" dimy, Hompy s (K, L[r])
reZ

on per A induces a bilinear form on Kj(per A) whose matrix with respect to that basis equals
the Cartan matrix.

It is well known that a derived equivalence of two algebras A and A’ induces an equivalence
of the triangulated categories per A and per A’, and hence an isometry of their Grothendieck
groups preserving the Euler forms. We now consider the consequences of the derived equiva-
lence of Theorem 2.4.9 (when R and S are finite dimensional k-algebras) for the corresponding
Grothendieck groups.

For simplicity, assume that A is basic. In this case, there exist primitive orthogonal idem-
potents {eq,...,e,} in A such that P; ~ e;A for 1 < ¢ < n. Therefore by the isomorphisms
Homap (e;A, N) ~ Ne; of k-spaces for any A-module N, we get that C;; = dimy ejAe;.

Lemma 2.5.1. Let R, S be basic, finite dimensional k-algebras, and let Mg be a finite di-
mensional S-R-bimodule. Then the Cartan matrix Cy of the corresponding triangular matrix

algebra A is of the form
_(Cr O
= (CM CS)

where Cr, C'g are the Cartan matrices of R, S.

Proof. Letey,..., e, and f1,..., fi,, be complete sets of primitive orthogonal idempotents in
Randin S. Lete; = ¢; (§9)and f; = f; (39). Thené,...,én, fi,..., fm is a complete set
of primitive orthogonal idempotents of A and the result follows by computing the dimensions of
ei\ey, éiAfj, .]EjAéi and ]‘T]A]EJ/ In particular, (C]w)]Z = dimy, €Z'ij. ]

Since dimy, f;DMe; = dimy, e; M f;, we get by Lemma 2.5.1 that the Cartan matrices of A
and its mate A are

_(Cr O _(Cs 0
= (@ o) 5= (G )
When at least one of R and .S has finite global dimension, the derived equivalence of The-
orem 2.4.9 implies that Cs and C represent the same bilinear form, hence they are congruent

over Z, that is, there exists an invertible matrix P over Z such that P!1C\ P = CT\'
One can also show this congruence directly at the level of matrices, as follows.
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Lemma 2.5.2. Let K be a commutative ring. Let A € My, (K) be a square matrix, B €
GL,,(K) an invertible square matrix and C' € M, (K). Then there exists P € GLj 4 (K)

such that
(A 0O (B 0
P (C B P= ct A

_ 0 I,
Proof. Take P = (—BlBt —BlC)' Then

pi(A 0Y,_ (0 —BB\ (A 0 0 I,
¢ B) ~\U, —c'Bt)\c¢ B)\-B'B! —BC

(0 —BB'\[{ 0 A\ (B 0
~\u —cBt)\-Bt o) \ct 4

—ATICT —ATTA
Ly, 0

g

Note that one could also take P = ( ) , hence it is enough to assume that

at least one of A and B is invertible.

The conclusion of the lemma is false if one does not assume that at least one of the matrices
A, B is invertible over K. This can be used to construct triplets consisting of two finite dimen-
sional algebras R, S (necessarily of infinite global dimension) and a bimodule M such that the
triangular matrix algebra A and its mate A are not derived equivalent.

Example 2.5.3. Let R = k[x]/(2?), S = k[y]/(y®) and M = k with = and y acting on k as
zero. Then the triangular matrix algebras

Ao (k[w](/)(xQ) k[y]l;(y3)) o (k[y]/(yS) k >

are not derived equivalent, since one can verify that their Cartan matrices

2 0 30
= (3 = (13

are not congruent over Z. Note that despite the fact that R and .S are self-injective, Corol-
lary 2.4.11 cannot be used since M does not have a finite projective resolution.

2.5.3 Trivial extensions

Triangular matrix rings are special cases of trivial extensions [4, p. 78]. Indeed, if R, S are rings
and p Mg is a bimodule, the corresponding triangular matrix ring is isomorphic to the trivial
extension A x M where A = R x S and M is equipped with an A-bimodule structure via
(r,s)m = rm and m(r, s) = ms.

We remark that even when A is a finite dimensional k-algebra of finite global dimension and
M is a finite dimensional A-bimodule, the trivial extension algebras A x M and A x DM are
generally not derived equivalent, so that the derived equivalence in Theorem 2.4.9 is a special
feature of triangular matrix rings.
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Example 2.5.4. Let A = k@) where Q) is the quiver ®1 —— ®2 and let M be the kQ-bimodule
corresponding to the following commutative diagram of vector spaces

O(1,1)

N

Oc2,1) ka,2)

~N 7

0(2,2)

Then A x M is the path algebra of the quiver ¢ = e while A x DM is the path algebra of
e — e modulo the compositions of the arrows being zero. These two algebras are not derived
equivalent since gl.dim(A x M) = 1 while gl.dim(A x DM) = occ.
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Chapter 3

Universal Derived Equivalences of
Posets

By using only combinatorial data on two posets X and Y, we construct a set of so-called for-
mulas. A formula produces simultaneously, for any abelian category A, a functor between the
categories of complexes of diagrams over X and Y with values in .A. This functor induces a
triangulated functor between the corresponding derived categories.

This allows us to prove, for pairs X, Y of posets sharing certain common underlying com-
binatorial structure, that for any abelian category A, regardless of its nature, the categories of
diagrams over X and Y with values in A are derived equivalent.

3.1 Introduction

In Chapter 1 we considered the question when the categories A~ and .AY of diagrams over finite
posets X and Y with values in the abelian category A of finite dimensional vector spaces over a
fixed field k, are derived equivalent.

Since in that case the category of diagrams A* is equivalent to the category of finitely gen-
erated modules over the incidence algebra kX, methods from the theory of derived equivalence
of algebras, in particular tilting theory, could be used [35, 73, 74].

Interestingly, in all cases considered, the derived equivalence of two categories of diagrams
does not depend on the field &, see for example Theorem 1.4.14. A natural question arises
whether there is a general principle which explains this fact and extends to any arbitrary abelian
category A.

In this chapter we provide a positive answer in the following sense; we exhibit several con-
structions of pairs of posets X and Y such that the derived categories D(AX) and D(AY) are
equivalent for any abelian category A, regardless of its nature. Such pairs of posets are called
universally derived equivalent, since the derived equivalence is universal and originates from the
combinatorial and topological properties of the posets, rather than the specific abelian categories
involved.

Our main tools are the so-called formulas. A formula consists of combinatorial data that pro-
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duces simultaneously, for any abelian category .4, a functor between the categories of complexes
of diagrams over X and Y with values in .4, which induces a triangulated functor between the
corresponding derived categories.

3.1.1 The main construction

Let X and Y be two finite partially ordered sets (posets). For y € Y, write [y,-] = {¢/ € YV :
y >ytand [,y ={y €Y : ¢ <y}. Let {Y, }cx be a collection of subsets of Y indexed
by the elements of X, such that

ly, Ny, ]=¢ and [,yIN[,y]=0¢ (3.1.1)

forany 2z € X and y # ¢’ in Y,. Assume in addition that for any x < 2, there exists an
isomorphism ¢, v : Y, =Y, such that

Y < 0z (y) forally € Y, 3.1.2)
By (3.1.1), it follows that
SOZB,.’E” = @x/’xngox,zr for all x S .I'/ S fI,'//. (313)

Define two partial orders < and <_ on the disjoint union X UY as follows. Inside X and
Y, the orders <, and <_ agree with the original ones, and for x € X and y € Y we set

r<yy<=dy; € Yy withy, <y (3.1.4)
y<_x<=dy, €Y, withy <y,

with no other relations (note that the element y,, is unique by (3.1.1), and that <, <_ are partial
orders by (3.1.2)).

Theorem 3.1.1. The two posets (XUY, <, ) and (XY, <_) are universally derived equivalent.

The assumption (3.1.1) of the Theorem cannot be dropped, as demonstrated by the following
example.

Example 3.1.2. Consider the two posets whose Hasse diagrams are given by

N N
NS NS
(XUY, <) (XUY,<)

They can be represented as (X LY, <;)and (X UY,<_)where X = {1}, Y ={2,3,4} and
Y1 = {2,3} C Y. The categories of diagrams over these two posets are in general not derived
equivalent, even for diagrams of vector spaces.
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Figure 3.1: Four universally derived equivalent posets

The construction of Theorem 3.1.1 has many interesting consequences, some of them related
to ordinal sums and others to generalized BGP reflections [9]. First, consider the case where all
the subsets Y, are single points, that is, there exists a function f : X — Y with Y, = {f(x)}
for all x € X. Then (3.1.1) and (3.1.3) are automatically satisfied and the condition (3.1.2) is
equivalent to f being order preserving, i.e. f(x) < f(2') forx < a’. Let gi and <’/ denote
the corresponding orders on X LI'Y, and note that (3.1.4) takes the simplified form

r<lyefla)<y (3.1.5)
y <! o e=y<f@

Corollary 3.1.3. Let f : X — Y be order preserving. Then the two posets (X UY, Si) and
(X LUy, <! ) are universally derived equivalent.

Example 3.1.4. Consider the four posets X1, X2, X3, X4 whose Hasse diagrams are drawn in
Figure 3.1. For any of the pairs (7, j) where (4, j) = (1,2), (1,3) or (3,4) we find posets Xj;;
and X;; and an order-preserving function f;; : X;; — X; such that

X~ (Xi5 U Xji, Sﬁj) X~ (X5 U X, Sjiij)

hence X; and X; are universally derived equivalent. Indeed, let

X2 = {1727475} Xo1 = {3767 7}
X13 = {172737475>6} X31 = {7}
X34 — {132737 7} X43 = {47536}

and define f12 : X12 — Xo1, f13 : X13 — X371 and f34 : X34 — Xy3 by

f12(1) =3 f12(2):f12(5) =7 f12(4) =6
fis(1) == f13(6) =7
f3a(1) = f34(7) = 4 f31(2) =5 f34(3) =6
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3.1.2 Applications to ordinal sums

Recall that the ordinal sum of two posets (P, <p) and (Q, <¢), denoted P @ @, is the poset
(PUQ,<)wherex < yifzx,y € Pandax <p yorz,y € Qandz <g yorz € P and
y € Q. Similarly, the direct sum P + @ is the poset (P U @, <) where z < y if z,y € P and
r<pyorz,y € Qandz <y y. Note that the direct sum is commutative (up to isomorphism)
but the ordinal sum is not. Denote by 1 the poset consisting of one element. Taking ¥ = 1 in
Corollary 3.1.3, we get the following

Corollary 3.1.5. For any poset X, the posets X ® 1 and 1 & X are universally derived equiv-
alent.

In Section 3.4.3 we prove the following additional consequence of Corollary 3.1.3 for ordinal
and direct sums.

Corollary 3.1.6. For any two posets X and Z, the posets X ®1® Z and 1 © (X + Z) are
universally derived equivalent. Hence the posets X &1 ® Z and Z & 1 & X are universally
derived equivalent.

The result of Corollary 3.1.6 is no longer true when 1 is replaced by an arbitrary poset, even
for diagrams of vector spaces, see Example 1.4.20.

By using Theorem 3.1.1, one can generalize Corollary 3.1.5 to ordinal sums with any finite
anti-chain.

Corollary 3.1.7. Let nl = 1 + --- 4+ 1 be an anti-chain with n > 1 elements. Then for any
poset X, the posets X & nl and nl & X are universally derived equivalent.

Proof. TakeY =nlandY, =Y forallz € X. O

Note that in Chapter 1 we have shown that for arbitrary two posets X and Y, it is true that
for any field k, the categories of diagrams of finite dimensional k-vector spaces over X @Y and
Y & X are derived equivalent (Corollary 1.4.15).

3.1.3 Generalized BGP reflections

More consequences of Theorem 3.1.1 are obtained by considering the case where X = {x} is a
single point, that is, there exists a subset Yy C Y such that (3.1.1) holds for any y # v in Yj.
Observe that conditions (3.1.2) and (3.1.3) automatically hold in this case, and the two partial
orders on Y U {x} corresponding to (3.1.4), denoted SKO and <0, are obtained by extending
the order on Y according to

¥ <0y <= Jyp € Yowithyo <y (3.1.6)
y <Y x = Jy € Yy withy < yp

Corollary 3.1.8. Let Yy C Y be a subset satisfying (3.1.1). Then the posets (Y U {x}, §10) and
(Y U {x}, <™) are universally derived equivalent.
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Note that in the Hasse diagram of <Y0 the vertex * is a source which is connected to the
vertices of Yy, and the Hasse diagram of <0 is obtained by reverting the orientations of the
arrows from *, making it into a sink. Thus Corollary 3.1.8 can be considered as a generalized
BGP reflection principle.

Viewing orientations on (finite) trees as posets by setting x < y for two vertices x, y if there
exists an oriented path from z to y, and applying a standard combinatorial argument [9], we
recover the following corollary, already known for categories of vector spaces over a field.

Corollary 3.1.9. Any two orientations of a tree are universally derived equivalent.

3.1.4 Formulas

By using only combinatorial data on two posets X and Y, we construct a set of formulas .7-"}(/.
A formula £ produces simultaneously, for any abelian category A, a functor F¢ 4 between the
categories C(AX) and C(AY) of complexes of diagrams over X and Y with values in A.
This functor induces a triangulated functor ﬁ& 4 between the corresponding derived categories
D(AX) and D(AY") such that the following diagram is commutative

C(AY) A oY)

Lo

D(AX) ,,F,g,’,",‘) D(.AY)

where the vertical arrows are the canonical localizations.
We prove Theorem 3.1.1 by exhibiting a pair of formulas £€* € .7-"2+ & € FZ =+ and

showing that for any abelian category .4, the compositions F£+ AFé A and Fg AF£+ A of the
corresponding triangulated functors on the derived categories are auto-equivalences, as they are
isomorphic to the translations. Hence < and <_ are universally derived equivalent.

3.1.5 A remark on infinite posets

A careful study of the proof of Theorem 3.1.1 shows that the theorem is still true when the
posets X and Y are infinite, provided that the posets Y, are finite for all z € X, as the formulas
constructed in the course of the proof involve only a finite number of terms at each point.

It follows that Corollaries 3.1.3, 3.1.5, 3.1.6, 3.1.7 hold for arbitrary (not necessarily finite)
posets X, Y and Z, and that Corollary 3.1.8 holds for any poset Y provided that the subset Y
is finite.

3.2 Complexes of diagrams

3.2.1 Diagrams and sheaves

Let X be any partially ordered set (not necessarily finite) and let .4 be a category. For infi-
nite posets, it is better to replace the notion of a commutative diagram over the Hasse diagram
introduced in Section 1.2.2 with the following more general notion.
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Definition 3.2.1. A diagram (A, r) over X with values in A consists of the following data:
e Forany x € X, an object A, of A
e For any pair z < 2/, a morphism r,, : A, — A,/ (restriction map)

subject to the conditions 7, = ida, and 7ypn = 7y, forall z < 2/ < z”in X.
A morphism f : (A,r) — (A’,7") of diagrams consists of morphisms f, : A, — A/, for all
x € X, such that for any z < 2/, the diagram

fa A

xT

commutes.

Using these definitions, we can speak of the category of diagrams over X with values in A4,
which will be denoted by AX.

We can view X as a small category as follows. Its objects are the points z € X, while
Homy (z, ') is a one-element set if x < 2’ and empty otherwise. Under this viewpoint, a
diagram over X with values in .A becomes a functor A : X — A and a morphism of diagrams
corresponds to a natural transformation, so that A* is naturally identified with the category of
functors X — A. Observe that any functor F' : A — A’ induces a functor F'X : AX — A'X by
the composition FX(A) = F o A. In terms of diagrams and morphisms, FX (A,r) = (F A, Fr)
where (FA), = F(Ay), (Fr)pe = F(rye) and FX(f), = F(fy).

If A is additive, then AX is additive. Assume now that A is abelian. In this case, AX is also
abelian, and kernels, images, and quotients can be computed pointwise, that is, if f : (A,r) —
(A, ") is a morphism of diagrams then (ker f), = ker f,, (im f), = im f,, with the restriction
maps induced from 7, /. In particular, for any 2 € X the evaluation functor —, : A% — A
taking a diagram (A, r) to A, and a morphism f = (f,) to f,, is exact.

The poset X admits a natural topology, whose open sets are the subsets U C X with the
property that if z € U and x < 2z’ then 2/ € U. When X is finite, the category of diagrams
over X with values in A can then be naturally identified with the category of sheaves over the
topological space X with values in .4, see Section 1.2.2.

3.2.2 Complexes and cones

Let B be an additive category. A complex (K*,d$.) over B consists of objects K* for i € Z with
morphisms di; : K* — K1 such that dif 'd}. = 0 forall i € Z. If n € Z, the shift of K* by
n, denoted K[n]°®, is the complex defined by K [n)’ = K", dy(, = (—1)"dim.

Let (K*,d%), (L*,d3$) be two complexes and f = (f*);cz a collection of morphisms f? :
K' — L' If n € Z,let f[n] = (f[n]")icz with f[n]* = fi™™. Using this notation, the condition
that f is a morphism of complexes is expressed as f[l|dx = dr.f.
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The cone of a morphism f : K* — L°, denoted C(K*® 7, L*®), is the complex whose i-th
entry equals K1 @ L?, with the differential

AT 1) = (dE ), FL ) o+ d 1)

In a more compact form, C(K* ER L*) = K[1]* & L*® with the differential acting as the matrix

(de 0 )
fI1 dr
by viewing the entries as column vectors. 4

When B is abelian, the i-th cohomology of a complex (K'*,dj;) is defined by H'(K*) =
ker d%, /im d%-'. We say that (K*, dyc) is acyclic if H'(K*®) = 0 for all i € Z. A morphism
f + K* — L*® induces morphisms H*(f) : H'(K*®) — H’(L®). The morphism f is called a
quasi-isomorphism if H*(f) are isomorphisms for all ¢ € Z.

The following lemma is standard.

Lemma 3.2.2. f : K* — L°® is a quasi-isomorphism if and only if the cone C(K*® EN L*) is
acyclic.

Let C'(B) denote the category of complexes over B. Denote by [1] : C'(B) — C(B) the shift
functor taking a complex (K*®, dj) to (K[1]*,dgi)+) and a morphism f to f[1]. Any additive
functor G : B — B’ induces an additive functor C(G) : C(B) — C(B’) by sending a complex
((K*), (dk)) to ((G(K")), (G(df))) and a morphism (f*) to (G(f*))-

Lemma 3.2.3. For any additive category A and a poset X, there exists an equivalence of cate-
gories®x 4 : C (AX) ~ C(A)X such that for any additive category A’ and an additive functor
F: A— A the diagram
®
CAX =% O
C(FX )l C(F)X
P ’
C(A/)X LN*“‘; C(AI)X
commutes. In other words, we can identify a complex of diagrams with a diagram of complexes.

Proof. Let A be additive and let (K*, d*) be a complex in C(AX). Denote by d’ : K — K+!
the morphisms in AX and by d, : K} — K the morphisms on the stalks. Let r;y (KL — K ;
denote the restriction maps in the diagram K*.

For a morphism f : (K*,d*) — (L*,d*) in C(A%), denote by f* : K* — L’ the corre-
sponding morphisms in AX and by fi : K! — L. the morphisms on stalks. Define a functor
P : C(AY) — C(A)X by

Ox a(K*,d%) = ({Kz}aex, {ray}) x.a(f) = (fa)zex
where (K3)" = K with differential d} = (d.,)", 74y = (r5,)" : K3 — Kj are the restriction
maps, and f, = (fL)" : K3 — L.

The commutativity of all squares in the diagram in Figure 3.2 implies that ®x 4 is well-

defined, induces the required equivalence and that (3.2.1) commutes. 0

3.2.1)
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i Z.
Tay it+1
z )
. di . it
i z i+1
K l K
7
Li dy Li—i—l
r Yy i4+1 Y
Ty i Tzy
fy
i+1
y
7 i+1
y
Figure 3.2:

In the sequel, X is a poset, A is an abelian category and all complexes are in C'(A~).
Lemma 3.2.4. H'(K*), = H(K?)

Proof. Kernels and images can be computed pointwise. O

Lemma 3.2.5. C(K* L L*), = C(k2 1= L2)

Corollary 3.2.6. Let f : K* — L*® be a morphism of complexes of diagrams. Then f is a
quasi-isomorphism if and only if for every x € X, f, : K3 — L3 is a quasi-isomorphism.
Proof. Letz € X and ¢ € Z. Then by Lemmas 3.2.4 and 3.2.5,

HI(C(K* & L%)), = HI(C(K* & L*),) = H(C(K? & 1Y)
hence C(K*® ER L*®) is acyclic if and only if C(K ELN L?) are acyclic for every z € X.
Using Lemma 3.2.2, we see that f is a quasi-isomorphism if and only if all the f, are quasi-
isomorphisms. O

3.2.3 Universal derived equivalence

Recall that the derived category D(B3) of an abelian category B is obtained by formally inverting
all the quasi-isomorphisms in C'(5). It admits a structure of a triangulated category where the
distinguished triangles in D(B) are those isomorphic to K/ — K — K" — K'[1] where
0 — K' — K — K" — 0 s a short exact sequence in C'(B).

Definition 3.2.7. Two posets X and Y are universally derived equivalent if for any abelian
category A, the derived categories D(AX) and D(A"") are equivalent as triangulated categories.

Lemma 3.2.8. Let X and Y be universally derived equivalent. Then X°P and Y °P are univer-
sally derived equivalent.

Lemma 3.2.9. Let X1, Y1 and Xs, Yo be two pairs of universally derived equivalent posets.
Then X1 x X9 and Y1 X Yy are universally derived equivalent.
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3.3 Formulas

Throughout this section, the poset X is fixed.

3.3.1 The category Cx

Viewing X x Z as a small category with a unique map (z,m) — (2/,m) if z < 2 and

m < m/ and no maps otherwise, we can consider the additive category Cx whose objects

are finite sequences {(z;,m;)}{; with morphisms {(z;, m;)};_; — {(z}, m}) ?/:1 specified
by n/ x n integer matrices (c;;);; satisfying ¢;; = 0 unless (z;,m;) < (x;,m;) That is,

a morphism is a formal Z-linear combination of arrows (z;,m;) — (z},m}). Addition and
composition of morphisms correspond to the usual addition and multiplication of matrices.

_ To encode the fact that squares of differentials are zero, we consider a certain quotient of
Cx. Namely, let T be the ideal in Cx generated by all the morphisms (x,m) — (x,m +2) for
(x,m) € X x Z and let Cx = Cx/Zx be the quotient. The objects of Cx are still sequences
¢ = {(x;,m;)} and the morphisms can again be written as integer matrices, albeit not uniquely
as we ignore the entries c;; whenever m; —m; > 2.

Define a translation functor [1] : Cx — Cx as follows. For an object £ = {(x;, m;)}!" . let
§[1] = {(zi, m; + 1)} For amorphism ¢ = (cji) : {(zi,m;)} — {(2f,m})}, let ¢[1] be
the morphism {(z;, m; + 1)} — {(27,m; + 1)} specified by the same matrix (c;;).

Let A be an abelian category. From now on we shall denote a complex in C(AX) by K
instead of K*, and use Lemma 3.2.3 to identify C'(A%X) with C(A)*. Therefore we may think
of K as a diagram of complexes in C'(.A) and use the notations K, dy, r, as in the proof of
that lemma.

For two additive categories B and B, let Func(B3, B') denote the category of additive func-
tors B — B’, with natural transformations as morphisms.

Proposition 3.3.1. There exists a functor 1 : Cx — Func(C(A)X, C(A)) commuting with the
translations.

Proof. An object & = {(z;,m;)}?, defines an additive functor F¢ from C(A)X to C(A) by
sending K € C(A)X and a morphism f : K — K'to

Fe(K) = P Ku,[mi) Fe(f) = P feilmil (33.1)
i=1 =1

where the right term is the n x n diagonal matrix whose (i,%) entry is fy,[m;] : Ky, [m;] —
K, [mi].

To define 7 on morphisms £ — &', consider first the case that £ = (z,m) and £’ = (2/,m’).
A morphism ¢ = (¢) : (x,m) — (2/,m’) in Cx is specified by an integer ¢, with ¢ = 0 unless
(z,m) < (2/,m’). Given K € C(A)¥, define a morphism n,,(K) : K,[m] — K,/[m'] by

¢ Typr[m] ifm’=manda’ > x
Ne(K) =< c-dy[m]ree[m] ifm'=m+1landa’ > x (3.3.2)
0 otherwise
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Then 7. : F¢ — Fy is a natural transformation since the diagrams

Kofm] = K (m) Ko~ m + 1) (3.3.3)
Kym] - [ ]Kg/c/ [m] K, [m] A w[m+1]

commute.
Let ' = () : (2/,m") — (2", m") be another morphism in Cx. Then (3.3.2) and the three
relations rypn = Ty Tygrs Togr [1]dy = dprryy and dg[1)d, = 0, imply that

N’ o (K) = Ny’ (K)%(K) (3.3.4)

for every K € C(A)X.
Now for a general morphism ¢ : {(zi,m;)}; — {(z,m)) ;‘/:1 define morphisms

e (K) + Dy Ke; [mi] — @)y Ky [m]] by

where 7, is defined by (3.3.2) for ¢;; : (24, m;) — (2, m).
It follows from (3.3.3) by linearity that for f : K — K’,
Fer(f)no(K) = no(K') Fe(f) (3.3.6)

so that n, : Fy — Fy is a natural transformation. Linearity also shows that (3.3.4) holds for
general morphisms ¢, .
Finally, note that by (3.3.1) and (3.3.2),

[1] o Fe = Fg o [1] = Fepy (1] onp =y o [1] = ny

for any object £ and morphism . O

3.3.2 Formula to a point

So far the differentials on the complexes F¢(K') were just the direct sums ;" dg,[m;]. For
the applications, more general differentials are needed.

Let o = (cji) : £ — & be a morphism. Define ¢* : § — &' by ¢* = (c;) where
¢ = (1) ey,
Lemma 3.3.2. Let D : § — £[1] be a morphism and assume that D*[1]- D = 0 in Cx. Then for
any K € C(A)X, np(K) is a differential on F¢(K).
Proof. Since Fypp)(K) = F¢(K)[1], the morphism D induces a map np(K) : Fe(K) —
F¢(K)[1]. Thinking of np (K) as a potential differential, observe that

np(K)[1] = n_p~)(K) (3.3.7)

52



Indeed, each component K,[m+1] — K,/[m'+1] of np(K)[1] is obtained from K,[m] —
K,/[m'] by a change of sign. When m’ = m, changing the sign of a map r,,/[m] leads to
the map —7r,./[m + 1]. When m’ = m + 1, changing the sign of d[m]r,, [m] leads to
dy[m + 1)ry[m + 1], as the sign change is already carried out in the shift of the differential
d,s[m)]. Therefore in both cases a the coefficient ¢ of (x, m) — (z’, m’) changes to —c*.

Now the claim follows from

no(K)[1] - np(K) = n_ps)(K)np(K) = n_p+pp(K) =0
O

Definition 3.3.3. A morphism ¢ = (¢) : (z,m) — (2/,m') is a differential if m" = m + 1,
2’ =z and c = 1. @ is a restriction if m' = m and 2’ > x.
A morphism ¢ : £ — &' is a restriction if all its nonzero components are restrictions.

Definition 3.3.4. A formula to a point is a pair (£, D) where { = {(x;, m;)}"_, is an object of
Cx and D = (Dy;)7;_y : € — £[1] is morphism satisfying:

1. D*[1]- D =0.
2. Dj; =0foralli> j.
3. D;; are differentials forall 1 <17 < n.

A morphism of formulas to a point ¢ : (£,D) — (&', D’) is a morphism ¢ : £ — £ in Cx
which is a restriction and satisfies ¢[1|D = D’¢p.

Denote by Fx the category of formulas to a point and their morphisms. The translation
[1] of Cx induces a translation [1] on Fx by (&, D)[1] = (£[1], D[1]) with the same action on
morphisms.

Proposition 3.3.5. There exists a functor n : Fx — Func(C(A)X,C(A)).

Proof. We actually show that the required functor is induced from the functor ) of Proposi-
tion 3.3.1.

An object (£, D) defines an additive functor F¢ p : C(A)X — C(A) by sending K €
C(A)X and f: K — K'to

Fep(K) = F¢(K) Fe p(f) = Fe(f)

asin (3.3.1). By Lemma 3.3.2, np(K) is a differential on F¢(K).

Now observe that F¢(f)[1]np(K) = np(K')Fe(f) since np : Fe¢ — Fgpy) is a natural
transformation. Therefore F¢(f) is a morphism of complexes and F p is a functor.

Let o : (§,D) — (£, D’) be a morphism in Fx. Since ¢ : £ — ¢’ in Cx, we have a natural
transformation 7, : F¢ — Fp . It remains to show that 7, (K') is a morphism of complexes. But
the commutativity with the differentials np(K) and np/(K) follows from ¢[1]D = D’y and
the functoriality of 7. U
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Example 3.3.6 (Zero dimensional chain). Let x € X and consider £ = {(z,0)} with D = (1).
The functor F{, ¢y (1) sends K to the stalk K, and f : K — K "to fo.

Example 3.3.7 (One dimensional chain). Let z < y in X and consider { = {(x,1), (y,0)} with
themap D = (19): & — £[1]. Then for K € C(A)* and f : K — K',

Fep(K) = K[l K, rot = (0 1)
with the differential

wii) = (F D) Kadle K, — Ko

Since for any object K, F¢ p(K) = C(K, Low, K, ) as complexes, we see that for any « < y,
the cone C(K, —% K,) defines a functor C(A)*X — C(A).

Lemma 3.3.8. There exists a natural isomorphism € : [1] o = 1o [1].
Proof. We first remark that for an object (¢, D) € Fx, a morphism ¢ and K € C(A)~,
Fém’Dm (K) = Fg’D(K[l]) and Ne[1] (K) = n@(K[l]) so that (7] o [1])(5, D) can be viewed as
first applying the shift on C(A)* and then applying Fy p.

We will construct natural isomorphisms of functors e¢ p : [1] o F¢ p — Fgp o [1] such that
the diagrams

Fep(K)[1] —2> Fepay, ppyy (K) (3.3.8)

[l]on¢l impm
(

K] == Fem,om(K)
commute for all K € C(A)X.

By 3.3.7), [1] o Fg p = Fepy),—p+p)- Write § = {(z5,mi)}y, D = (Dji)};—1, and let
I¢ : £ — ¢ be the morphism defined by the diagonal matrix whose (7,4) entry is (—1)™:. By
definition, D}, = (—1)mt1=mi Do, or equivalently (—1)™ Dj; = —D5;(—=1)™ for all 4, ,
hence I¢[1]D = —D*I¢. Therefore I¢[1] : ({[1], D[1]) — (&[1], —D*[1]) is an isomorphism in
Fx,sowedefine e¢ p = NI [1]-

For the commutativity of (3.3.8), first observe that [1] o 1, = 1, o [1] = 7,[;]. Now use the
fact that I¢p = @l for any restriction ¢ : § — ¢ O

In the next few lemmas, we fix a formula to a point (£, D).

Lemma 3.3.9. I p maps short exact sequences to short exact sequences.

Proof. Write § = {(x;,m;)}; andlet 0 — K’ Ik L5 K7 — 0 be a short exact sequence.

Then 0 — K, 5, K, ~ K! — 0is exact for any z € X, hence

™ oot D7, f1,Imi] 4 DL, flmi] AN .,
0 — @D K4 Imi) === P Ko mi] == P K [mi] — 0
=1 1=1 =1
is exact. 0
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By composing with the equivalence ® : C(A¥X) — C(A)*, we may view F p as a functor
C(AX) — C(A) between two categories of complexes.

Lemma 3.3.10. F¢ p maps quasi-isomorphisms to quasi-isomorphisms.

Proof. Write £ = {(x;, m;)}_,. We prove the claim by induction on n. When n = 1, we
have { = (x,m), F¢ p(K) = K;[m] and F¢ p(f) = fz[m], so that the claim follows from
Corollary 3.2.6.

Assume now that n > 1, and let ¢ = {(zs,m;)}7—" and D' = (Dj;)?'1; be the corre-
sponding restricted matrix. By the assumption that D = (D;) is lower triangular with ones on
the main diagonal, we have that the canonical embedding ¢ : K, [m,] — @, K;,[m;] and
the projection wx : @, Ky, [mi] — @I~ K,,[mi] commute with the differentials, hence
there exists a functorial short exact sequence

0 = (Kz,[mn], do, [mn]) — (Fg,p(K),np(K)) — (Fgr,p/(K),np/(K)) — 0 (3.3.9)

Let f : K — K’ be a morphism. The functoriality of (3.3.9) gives rise to the following
diagram of long exact sequences in cohomology,

— H'(Fg,p/(K)) H' (Ko, [mn]) H'(Fe,p(K)) =
lHi(Fg/,D/(f)) iHi(fzn ) lHi(Fg,Dm)
— H'(Fg,p/(K")) HY(K, [ma]) H'(Fe,p(K')) =

= H'(F¢,p(K)) —— H"™ (Fg pr(K)) —— HH (K, [my]) —

lHi(Fg,Dm) iHiH(F&/,Dwf)) lH”l(fm fma)
= H(Fe,p(K')) —H™* (Fe pr (K')) —— HH (K, [mn]) ——

Now assume that f : K — K’ is a quasi-isomorphism. By the induction hypothe-
SiS, fiUn [mn] : K:cn [mn] — K;?n [mn] and Fﬁ’,D’(f) : F§/7D/(K) — Fg/,D/(KI) are quasi—
isomorphisms, hence by the Five Lemma, F¢ p(f) is also a quasi-isomorphism. 0

Corollary 3.3.11. Let (§, D) be a formula to a point. Then F¢ p induces a triangulated functor
Fep: D(AX) — D(A).

3.3.3 General formulas

Definition 3.3.12. Let Y be a poset. A formula from X to'Y is a diagram over Y with values in
Fx.

Proposition 3.3.13. There exists a functor n : F — Func(C(A)X, C(A)Y).
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Proof. Letn : Fx — Func(C(A)X,C(A)) be the functor of Proposition 3.3.5. Then
nY : F¥ — Func(C(A)X,C(A))Y ~ Func(C(A)X,C(A)Y)
is the required functor. O
Let & € Fx be a formula.
Lemma 3.3.14. F¢ maps short exact sequences to short exact sequences.

Proof. Tt is enough to consider each component of Fg separately. The claim now follows from
Lemma 3.3.9. O

By composing from the left with the equivalence ® : C'(AX) — C(A)¥X and from the right
with @71 : C(A4)Y — C(AY) we may view Fy as a functor C(AX) — C(AY) between two
categories of complexes.

Lemma 3.3.15. F¢ maps quasi-isomorphisms to quasi-isomorphisms.

Proof. Let f : K — K’ be a quasi-isomorphism. By Corollary 3.2.6, it is enough to show that
each component of F¢( f) is a quasi-isomorphism in C'(.A). But this follows from Lemma 3.3.10.
O

Corollary 3.3.16. Let & be a formula. Then F induces a triangulated functor 155 : D(AY) —
D(AY).

3.4 Applications of formulas

3.4.1 The chain with two elements
As a first application we consider the case where the poset X is a chain of two elements

.14>.2

We focus on this simple case as the fundamental underlying principle of Theorem 3.1.1 can
already be effectively demonstrated in that case.
Let (&1, D1), (&2, D) and (&12, D12) be the following three formulas to a point in F7_,o.

a=00D=1) =)= () 1) e
&= (2,0),D, = (1)

Let A be an abelian category and K = K| —2 K be an object of C'(A!'~2) ~ C(A)' 2.
In the more familiar notation,

F§1,D1 (K) - Kl[l] F§27D2 (K) = Ko F£12,D12 (K) = C(Kl REN KQ)

see Examples 3.3.6 and 3.3.7.
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The morphisms

p1=(1 0):&2—& 902=<(1))152—>§12
are restrictions that satisfy 1 D12 = D11 and p2 D2 = D122, hence
& = (12, D12) = (&1, D1) €5 = (&, D2) = (&12, Do)
are diagrams over 1 — 2 with values in F1_.9, thus they define functors R, Rt :C(AY™?) —

C(A'?) inducing triangulated functors R~, R* : D(A'~2) — D(A'~?2). Their values on
objects K € C(A'™2) are

R (K) = C(K; 12 Fp) L0, gy (3.4.2)
0
RT(K) = K» —>(’"22) C(K, 2% Ky)

Proposition 3.4.1. There are natural transformations
_ et e~ t _
RToR —[1] — R oRT
such that et~ (K), e~ (K) are quasi-isomorphisms for all K € C(A'7?2).

Proof. The functors RT o R~ and R~ o R™ correspond to the compositions £~ =& o (¢ —
€y)and€ " =€ o (6] — &7), given by

0
0

£Y7 = (&,D1) ~% (€191, Dian)
£ = (&2, Da12) {00), (&2(1], Do[1])

where

—_

0
(élzl,Dm):(((1,2),(2,1),(1,1)), 11 ) (3.4.3)
10

0
0
1
1 0 0
(5212,D212)=(((271%(171)7(270))’ 0 1 0))
1 11

and the translation [1] corresponds to the diagram
_ (1)
v = (&, D1) — (&[1], Do[1])
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Let a1, a9, 31, B2 be the morphisms

1
1
ai : (&, Dq) @ (€212, Da12) b1 ¢ (212, D212) {0-10), (&1, D1) (3.4.4)

0
3 (011)

ag : (€21, Do[1]) =25 (€121, D121) B2 = (€121, Dia1) ——— (&2[1], D2[1])
The following diagram in J7_,9

(1)

aq

(&1, Dy) (&1, Dq) (€212, D212)

(§)i l(l) . l(mo)

(€121, D121) —> (&2(1], D2(1]) — (&[1], D2(1])

is commutative, hence the horizontal arrows induce morphisms of formulas £t~ — v and
v — £ T, inducing natural transformations e~ : R"R~ — [1]ande~t : [1] - R~ R*.

We prove that ™~ (K) and e~ 1 (K) are quasi-isomorphisms for all K by showing that each
component is a quasi-isomorphism (see Corollary 3.2.6). Indeed, let hy : 212 — E212[—1] and
ha : §121 — &121[—1] be the maps

0 0 1
hi=hy=10 0 O
0 0 O
Then
o = (1) 1By + (1) Darg + Dypo[~1]h1) = I3 (3.4.5)
Bocry = (1) a2 + (h2[1] D121 + Dig [—1]ho) = I3

where I3 is the 3 x 3 identity matrix, hence 31 a1 and B2cs induce the identities and a1 31, o2
induce morphisms 1), 3, (K) and 74,3, (K) homotopic to the identities. Therefore 74, (K),
Nas (K), N, () and ng, (K) are quasi-isomorphisms. O

Proposition 3.4.2. There are natural transformations
RToR* = R- Rt o[l] = R oR-
such that e+ (K), e~ (K) are quasi-isomorphisms for all K € C(A7?).

Proof. The functors RT o R* and R~ o R~ correspond to the compositions £t = £+ o (€] —
§)and§" =& o (& —§&;), givenby

oo
—OoO

YT = (&9, D12) —— (&212, Da12)
00
€ = (&121, D1m) ;0)> (§12(1], —=D3a[1])

—~
O
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where (121, D121) and (€212, D212) are as in (3.4.3). The commutative diagrams

(59) o
(€12, D12) — 2= (€12, D12) (&2[1], Da[1]) —=— (&121, D121)
00
GHl oo D gy o
- 01 .
(212, Da12) — (&a[1], Da[1]) (§12[1], Dia[1]) —(&12[1], =D1,[1])
where ag, 41 are as in (3.4.4), define morphisms of formulas £+ — £~ and €T[1] — &,
hence natural transformations e™ : RTRt — R~ and e~ : RT[1] — R~ R~. Using the
homotopies (3.4.5), one proves that e (K) and e~ (K) are quasi-isomorphisms for all K in
the same way as before. 0

Corollary 3.4.3. For any abelian category A, the functors R" and R~ are auto-equivalences
of D(A)'=2 satisfying

RTR™ ~[1]|~ R R* (RY)? ~ R~ (R7)? ~ Rt o[l]
hence (R*)? ~ [1].
3.4.2 Proof of Theorem 3.1.1

Let X and Y be two posets satisfying the assumptions (3.1.1) and (3.1.2), and let <, <_ be the
partial orders on X U Y as defined by (3.1.4). We will prove the universal derived equivalence
of <, and <_ by defining two formulas £, £~ that will induce, for any abelian category A,
functors

R = Fgi : C(A)S+ — C(A)=- R~ =Fg :C(A)S — C(A)=F
and

R* = Fgy : D(AS*) — D(AS) R™ = F; : D(AS") — D(AS)
such that RY R~ ~ [1] and R~ R+ ~ [1].

Definition of the formulas to points

Forzx e Xandy €Y, let

§x = ((:I:,O), (1)) gy = ((y70)7 (1)) ng = ((y,O)erI,I)

where [ is the identity matrix. We consider £, §, and {y, as formulas either in <, orin F<_,
as appropriate. If y € Y, define

6;25y6f§+ f;zﬁyefg_
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as in Example 3.3.6. If z € X, let

()

— 11 —
oy, = (6 1 &,) € L2 fvoe = (&, Lt gy e FL?
be formulas to 1 — 2 and define
€F =&aoksy, £ =&1208v,

as compositions with the formula &1, defined in (3.4.1).

In explicit terms, let K € C(A)S+, L € C(A)<-, and denote by {r,, } the restriction maps
in K and by {sy, } the restriction maps in L. Forz € X andy € Yy, letsy : Ky — D, oy, Ky,
and 7y, : @yzeYz L,, — L, be the canonical inclusions and projections. Then

RH(I), = O(K, =222 (N fe,) RH(K), = K,
yeYy
@ L UEYL SyzTy Lx) R_(L)y _ Ly[l]
yeYy

forre X,yeY.

Definition of the restriction maps

We shall denote by p™ the restriction maps between the formulas in R and by p~ the maps
between those in R~. We consider several cases, and use the explicit notation.
For y < o/, define
p;—y,(K) = Tyy’ : Ky — Ky/ p;y,(L) = Syy/[l] : Ly[l] — Ly/[l]
For < 2/, we use the isomorphism ¢ .+ : Y; — Y, and the property that y < ¢, ,/(y)
for all y € Y, to define the diagonal maps

Paar () = T @ Ty, g ): RY(K)y — RT(K)y
yeYy
p;m,(L) = (@ Sy,goml(y)[l]) ® Sger : B (L) — R™ (L)
yeY:

If y, € Y, thenby (3.1.4), y. <_ x, x <4 ¥y,, and we define

(o)
gz () = Ky, 5 C(K, — @ Ky)

Py,
S

@ L - K ﬂyz[l] 0) Lyw [1]
YyeEYy

p$yz

Finally, if y <_ =z, by (3.1.1) there exists a unique y, € Y, such that y < y, and we set

P (K) = pf o (K)pf, (K). Similarly, if 2 <, y, there exists a unique y, € Yz with y, <y,
and we set p,, (L) = p,_ (L) pg,. (L).

60



Verification of commutativity

Again there are several cases to consider. First, when y < 3/ < ¢/, p;“y,, = p;, W p;y, follows
from the commutativity of the restrictions 7, = 7,7y, and similarly for p~.

Letz < 2/ < 2”. Since @, : Y, — Y,/ is an isomorphism and @ ..n = Q141 0yer, We can
write

pi:/gg” (K) = TCE’CE”[]‘] @ @ Ty’,gozlzu (y’) = T$'$”[1] @ @ Tgozzl(y),@zrzugoml(y)
y'eY,, yeYy

— Tm/.’b// []‘] @ @ T@zz’ (y),g&zz// (y)
yEYz-

Now p;;,, = p;',x,, p;, follows from the commutativity of the restrictions 7, = 7./, and
Ty onent () = T0r ot () spmar () Ty, () - 1NE proof for p_'is s'imilar.

Ify <y <_ zlety,,y, €Y, be the elements satisfying y < y,, v’ < y,. Then y, = y,
by uniqueness, since ' < 1,.. Hence

+ o+ ot o+ o+
py’ac - pyz:ppy’yw - pyzxpyyzpy/y - py:(;py’y
The proof for p~ in the case x < y < ¢/ is similar.
If y, <_ x < 2/ where y, € Yy, then y,» = g/ (yz) is the unique element y,, € Y, with

Yo < Yyr, and

+ o+ + 4+ o+
Pysar = P 1 (y2)a' Pyappar (o) — PaaPyse

by the commutativity of the diagram

+
K,, Pyz,x C(K, — Gaerz Ky)

Tyz 0t (Ya) \L . lp;rxlzrm’ 1]e® Ty, (U)

p ’
# oyt (V) C(Kx’ — @y'EYI/ Ky’)

K 0y o (Yz)

Now if y <_ z < 2/, let 4, € Y, be the element with y < y,. Theny < y, <_ z < 2’/ and
commutativity follows from the previous two cases:

+ ot b b+
The proof for p~ in the cases 2’ < z <, y, and 2’ < z <, y is similar. Here we also use

fact that ./, is an isomorphism to pick y,» = go;,}v(yx) as the unique element y,» € Y, with

Yo' < Yz

Construction of the natural transformations R* R~ — [1] - R™R™

Observe that

("), =&l (E7€%), = &[]
€T )e =08, (€€ =En20&y,
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where £121 and £219 are the formulas defined in (3.4.3).
Let v be the formula inducing the translation and define e ™~ : €€~ — v, e v — £ €T
by
_ (1)
ef T 1 &[] — &[1]
_ B20€ T
;:_ : 5121 o £Y1,m L’ 52[1] o ng,x = gx[l}
_ (1)
g, T 1 &[] — &[1]
alogx,ym

TG =608y, ——5 1208y,

where & and & are as in (3.4.1) and « and (> are as in Proposition 3.4.1. The proof of
that proposition also shows that e*~ and e~ are morphisms of formulas and induce natural
transformations between functors, which are quasi-isomorphisms.

3.4.3 Proof of Corollary 3.1.6

Let X and Z be posets, andlet Y =1 @& Z. Denote by 1 € Y the unique minimal element and
consider the map f : X — Y defined by f(x) = 1 forall x € X. Then

Xuy,<)2Xo1aZ (XuYy,<H)~1a (X +2)

hence by Corollary 3.1.3, X &1 @ Z and 1 & (X + Z) are universally derived equivalent.
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Part 11

Combinatorial Applications for Tilting
Objects
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Chapter 4

Universal Derived Equivalences of
Posets of Tilting Modules

We show that for two quivers without oriented cycles related by a BGP reflection, the posets of
their tilting modules are related by a simple combinatorial construction, which we call flip-flop.

We deduce that the posets of tilting modules of derived equivalent path algebras of quivers
without oriented cycles are universally derived equivalent.

4.1 Introduction

In this chapter we investigate the combinatorial relations between the posets of tilting modules
of derived equivalent path algebras. While it is known that these posets are in general not
isomorphic, we show that they are related via a sequence of simple combinatorial constructions,
which we call flip-flops.

For two partially ordered sets (X, <x), (Y, <y) and an order preserving function f : X —
Y, one can define two partial orders gfr and §Ji on the disjoint union X U Y, by keeping the
original partial orders inside X and Y and setting

<l ye= fz) <vy
y<l 2= y<y f(z)

with no other additional order relations. We say that two posets Z and Z' are related via a
flip-flop if there exist X, Y and f : X — Y as above such that Z ~ (X UY, Si) and 7' ~
(X Uy, <)

Throughout this chapter, we fix an algebraically closed field k. Given a (finite) quiver Q)
without oriented cycles, consider the category of finite-dimensional modules over the path alge-
bra of ), which is equivalent to the category rep ) of finite dimensional representations of ()
over k, and denote by 7 the poset of tilting modules in rep ) as introduced by [75]. For more
information on the partial order on tilting modules see [44], the survey [84] and the references
therein.
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Let z be a source of  and let Q' be the quiver obtained from @ by a BGP reflection, that is,
by reverting all arrows starting at . The combinatorial relation between the posets 7¢g and 7¢
is expressed in the following theorem.

Theorem 4.1.1. The posets I and Iy are related via a flip-flip.

In fact, the subset Y in the definition of a flip-flop can be explicitly described as the set of
tilting modules containing the simple at x as direct summand, and we show that it is isomorphic
as poset to T\ (1

While two posets Z and Z’ related via a flip-flop are in general not isomorphic, they are
universally derived equivalent in the following sense; for any abelian category A, the derived
categories of the categories of functors Z — A and Z’ — A are equivalent as triangulated
categories, see Corollary 3.1.3.

For two quivers without oriented cycles @ and @', we denote Q ~ Q' if Q" can be obtained
from @) by a sequence of BGP reflections (at sources or sinks). It is known that the path al-
gebras of () and Q' are derived equivalent if and only if Q ~ @', see [35, (1.5.7)], hence by
Corollary 3.1.3 we deduce the following theorem.

Theorem 4.1.2. Let Q and Q' be two quivers without oriented cycles whose path algebras are
derived equivalent. Then the posets I and Iy are universally derived equivalent.

The chapter is structured as follows. In Section 4.2 we study the structure of the poset 7g
with regard to a source vertex x, where the main tool is the existence of an exact functor right
adjoint to the restriction rep @@ — rep(Q@ \ {x}). For the convenience of the reader, we record
the dual statements for the case of a sink in Section 4.3. Building on these results, we analyze the
effect of a BGP reflection in Section 4.4, where a proof of Theorem 4.1.1 is given. We conclude
by demonstrating the theorem on a concrete example in Section 4.5.

4.2 Tilting modules with respect to a source

Let ) be a quiver. For a representation M in rep (), denote by M (y) the vector space corre-
sponding to a vertex y and by M(y — ¢') the linear transformation M (y) — M (y’) corre-
sponding to an edge y — %/ in Q.

Let = be a source in the quiver @, to be fixed throughout this section.

Lemma 4.2.1. The inclusion j : Q \ {x} — Q induces a pair (j 1, j.) of functors
j'irepQ — rep(Q \ {x}) Jx s rep(Q \ {z}) — rep@

such that
Homg, 51 (j ™' M, N) =~ Homg (M, j.N) 4.2.1)

forall M € rep @, N € rep(Q \ {z}) (that is, j. is a right adjoint to 7).

Proof. We shall write the functors j !

(7 M)(y) = M(y) G M)y —y) =My —v)

and j. explicitly. For M € rep (), define
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forany y — ¢ in Q \ {z}. For N € rep(Q \ {z}), define

(4 N)(y) = N(y) Ny = y) =Ny —y)
(GeN) (@) = D N(wi) (G N) (@ = i) = (j«N)(@) — N(ys) (42.2)
i=1
where 1, ..., yn are the endpoints of the arrows starting at z, (j«N)(x) — N(y;) are the

natural projections, and y, 3’ are in Q \ {z}.
Now (4.2.1) follows since the maps M (y;) — N(y;) for 1 < i < m induce a unique map
M(z) — N(y1) ® - -+ @ N(ym) such that the diagrams

M(z) —= (- N)(z) = DiZ; N(vi)

| |

M (y;) N(y:)

commute forall 1 <7 <m. ]

Lemma 4.2.2. The functor j, is fully faithful and exact.

Proof. Observe that j~'7, is the identity on rep(Q \ {z}), hence for N, N’ € rep(Q \ {z}),
Homg (j.N, j.N') ~ Homg (51 (5"« N, N') = Homg, (3 (N, N')

so that j, is fully faithful. Its exactness follows from (4.2.2). O

Denote by D°(Q) the bounded derived category D?(rep Q). The exact functors j~! and 7,
induce functors

i DY(Q) — D(Q\ {z}) Jo: D(Q\ {z}) = D"(Q)

with
Homopy g\ ) (i~ M, N) ~ Homps ) (M, j.N) (4.2.3)

forall M € D*(Q), N € D*(Q \ {z}).
Let .S, be the simple (injective) object of rep () corresponding to .

Lemma 4.2.3. The functor j, identifies rep(Q \ {x}) with the right perpendicular subcategory
Sy ={M €repQ : Ext'(S;, M) =0foralli>0} (4.2.4)
of rep Q.
Proof. Observe that =15, = 0. Hence by (4.2.3),
Exty(Se, joN) = Extip 1,357z, N) = 0

forall N € rep(Q \ {z}).
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Conversely, let M be such that Ext%(SI, M) =0fori > 0,andlet p : M — j,j M
be the adjunction morphism. From j~'j.j~!M = j~'M we see that (kerp)(y) = 0 =

(coker ¢)(y) for all y # x.
From 0 — ker ¢ — M we get

0 — Homg (S, ker ¢) — Homg (S, M) =0 (4.2.5)
hence ker ¢ = 0. Thus 0 — M — j,j~'M — coker ¢ — 0 is exact, and from
0 = Homg(Sy, j«j M) — Homg(S,, coker ¢) — Ext({?(Sx, M)=0
we deduce that coker ¢ = 0, hence M ~ j,j ' M. 0

Lemma 4.2.4. The functor j, takes indecomposables of rep(Q \ {z}) to indecomposables of
rep Q.

Proof. Let N be an indecomposable representation of @\ {z }, and assume that j, N = M;® M.
Then N ~ j~1j,N = j~'M; @ j~' My, hence we may assume that j =1 My = 0.

Thus My = S} for some n > 0. But j.N belongs to the right perpendicular subcategory
Sj which is closed under direct summands, hence n = 0 and My = 0. O

Recall that T € rep Q is a tilting module if Exti(T ,T) = 0 for all i > 0, and the direct
summands of T generate D°(Q) as a triangulated category. If T is basic, the latter condition
can be replaced by the condition that the number of indecomposable summands of 7" equals the
number of vertices of ().

For a tilting module T, define

T+ ={M erepQ : Ext/(T,M)=0foralli >0}

and set T < T if T+ D T'*. By [44], T < T’ if and only if Ext{,(T,T") = 0 for all i > 0.
Denote by 7, the set of basic tilting modules of rep @, and by 7 the subset of 7, consisting
of all tilting modules which have .S, as direct summand.

Lemma 4.2.5. ’Tg is an open subset of Ig, that is, if T € ’Té” andT <T' thenT' € 75.

Proof. Let T € T35 and T € 7g such that T < T". Then 7" € T+, and in particular
Ext!(S,,T") = 0 for i > 0. Since S, is injective, it follows that Ext*(7", S,) = 0 for i > 0,
hence if 77 & T, Q’” , then S, @ T would also be a basic tilting module, contradiction to the fact
that the number of indecomposable summands of a basic tilting module equals the number of
vertices of (). O

Proposition 4.2.6. Let T be a tilting module in rep Q. Then j~'T is a tilting module of rep(Q \

{}).
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Proof. We consider two cases. First, assume that 7' contains .S, as direct summand. Write
T = S @ T’ with n > 0, where T" does not have S, as direct summand. Then j~'T = j~1T"
and T’ € S, hence j,j~'T' = T" and

Extig zy (17T, 57 'T) = Extig, (,y (51T, 57 T")
= Ext( (1", j,j'T") = Extp(T',7') =0 (4.2.6)

Now assume that 7" does not contain S, as direct summand, and let ¢ : T — j,j~'T be
the adjunction morphism. Then Homg(S;,T) = 0 and similarly to (4.2.5), we deduce that
ker o = 0. Observe that coker p = S for some n > 0 is injective, hence from the exact
sequence 0 — T — j,j T — coker ¢ — 0 we get for i > 0,

0 = Ext/(T,T) — Ext!(T, j,j 'T) — Ext*(T, coker ¢) = 0 (4.2.7)

therefore Extqy, 4 (777,77 'T) = Extg(T, j.j~'T) = 0 fori > 0.

To show that the direct summands of j~!7" generate D°(Q \ {z}), it is enough to verify that
forany y € Q\{z}, the corresponding projective P, in rep(Q)\{x}) has a resolution with objects
from add j717. Indeed, let y € Q \ {z} and consider the projective ﬁy of rep Q. Applying
the exact functor ;~! on an add T-resolution of ﬁy gives the required add j ~!7-resolution of

P, =j"'P, O

Note that j =17 may not be basic even if T is basic. Write basic(j T for the module
obtained from j 17" by deleting duplicate direct summands. Then basic(j ~!7) is a basic tilting
module with basic(j~!7)+ = (j7'T)*. Tt follows by the adjunction (4.2.3) that for N €

rep(Q \ {z}).
Ne (7 'T) < j,NeTt

Corollary 4.2.7. The map 7, : T + basic(j~'T) is an order-preserving function (7o, <) —

(To\ (23> <)-
Proof. Let T < T’ and consider N € (j7'T")*. Then j,N € T'* C T+, hence N € (j7'T)*,
so that j 17 < j=177. O

Let N, N’ be objects of rep(Q \ {z}) with ExtiQ\{m}(N, N') = 0forall i > 0. By the
adjunctions (4.2.3),

Ext (7 NV, . N') = Extiy 1,y (77 5N, N') = Extiy gy (N, N') = 0
Exty(Se, joN') 2 Exctig, (3 (G Se, N') = 0
Extg (s N, Sz) =0
where the last equation follows since .S injective. Hence
Ext{)(Sz @ juN, Sz @ juN') = 0 forall i > 0 (4.2.8)
Corollary 4.2.8. Let T be a basic tilting module in rep(Q \ {z}). Then S, ® j.T is a basic

tilting module in rep Q.
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Proof. Indeed, Ext}é(Sx ® 5T, S, ® 7.T) = 0 fori > 0, by (4.2.8).

Let n be the number of vertices of (). Since T is a basic tilting module for @ \ {x}, it has
n — 1 indecomposable summands, hence by Lemmas 4.2.3 and 4.2.4, j,'T' decomposes into n — 1
indecomposable summands. It follows that S, & j.T is a tilting module. O

Corollary 4.2.9. The map v, : T + S, © jiT' is an order preserving function (To) (5}, <) —
(75, <).

Proof. Let T < T"in T\ (). Then Extlé\{gc}(T, T') = 0 for all ¢ > 0 and the claim follows
from (4.2.8). O

Proposition 4.2.10. We have
Tple(T) =T

or all T € To\ 1,1 In addition,
Q\{z}
T < 1,7m4(T)

for all T € Tq, with equality if and only if T € 1.

In particular we see that ¢, induces a retract ¢, m, of 7g onto Tcijj and an isomorphism of
posets between T, (,} and 7.

Proof. If T € Ty gz then j~1(S, & j.T) = j~1j.T = T, hence w1, (T) = basic(T) = T.
Let T € 7. Then Extg (T, S;;) = 0 for i > 0. Moreover, by the argument in the proof of
Proposition 4.2.6 (see (4.2.6) and (4.2.7)), Exté?(T, j*j_lT) = 0. It follows that S, @ j,j 1T €
T+, thus T < 1,7,(T).
If T = t;m,(T), then obviously 7" has S, as summand, so that T € Té‘. Conversely, if
T € T2, then T = S, ® T' with T" € S, and by Lemma 4.2.3, T’ = j.j~'T", hence
LeTe(T) = Sp @ juj T =S, 0T =T. O

Corollary 4.2.11. Let X = Tg \ TQZ andY = TQm. Define f : X — Y by f = 1,7z Then
To~ (XUuY,<l).

Proof. LetT € X and T’ € Y. If T < T’, then by the previous proposition,
F(T) = 1ome(T) < 1yme(T') =T

hence T' < 7" in 7q if and only if f(T") < T"in 7j. O

4.3 Tilting modules with respect to a sink

Now let Q' be the quiver obtained from (Q by reflection at the source x. For the convenience of
the reader, we record, without proofs, the analogous (dual) results for this case.
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Lemma 4.3.1. The inclusioni : Q \ {z} — Q' induces a pair (i,i~1) of functors

' irep @ — rep(Q \ {z}) i :1ep(Q\ {z}) — rep Q'

such that
Homrep(Q\{m}) (N, iflM) ~ HomrepQ(ilN, M)

forall M € rep@Q, N € rep(Q \ {x}) (that is, i is a left adjoint to i~*).

Proof. For M € rep @', define

(i~ M) (y) = M(y) (TIM)(y —y) =My — )
foranyy — ¢ in Q \ {z}. For N € rep(Q \ {x}), define
((N)(y) = N(y) ((N)(y = y) =Ny — )
(irN)(z) = P N(w) (aN)(yr — x) = N(yi) — (N)(x)
=1
where y1, . .., Yy, are the starting points of the arrows ending at z, N(y;) — (i1V)(x) are the
natural inclusions, and y, 3/ are in Q \ {z}. O

Lemma 4.3.2. The functor 1, is fully faithful and exact.
Let S, be the simple (projective) object of rep ()’ corresponding to x.

Lemma 4.3.3. The functor i, identifies rep(Q \ {z}) with the left perpendicular subcategory
LSl = {M €repQ : Ext'(M,S,)=0foralli >0}

of rep Q.

Lemma 4.3.4. The functor i takes indecomposables of rep(Q \ {z}) to indecomposables of
rep @'

Denote by TQ“/’, the subset of 7¢y consisting of all tilting modules which have S/, as direct
summand.

Lemma 4.3.5. 75' is a closed subset of T¢y, that is, if T € 75, andT' < T, thenT' € 75,.

Proposition 4.3.6. Let T be a tilting module in vep Q'. Then i~'T is a tilting module of rep(Q\

{z})-

Corollary 4.3.7. The map ), : T + basic(i~'T) is an order-preserving function (T, <) —
(To\(a}> <)-

Lemma 4.3.8. Let T be a basic tilting module in rep(Q \ {z}). Then S, ® i\T is a basic tilting
module of rep Q'.
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Corollary 4.3.9. The map (!, : T — S' @ 4T is an order preserving function (TQ\{I}, <) —
(Té”,, <).
Proposition 4.3.10. We have
wil (T) =T
forall T € Tg 14y In addition,
T > xl (T)
forall T € 1gy, with equality if and only if T' € 15,.
Corollary 4.3.11. Let X' =Ty \ 15 and Y' =135, Define f': X' — Y' by f' = im0 Then
TQ/ ~ (X/ LJ Y/, S{/)

4.4 Tilting modules with respect to reflection

Let F : D*(Q) — D*(Q’) be the BGP reflection defined by the source x. For the convenience
of the reader, we describe F' explicitly following [33, (IV.4, Exercise 6)] (see also Chapter 3).

Observe that a complex of representations of () can be described as a collection of complexes
K, of finite-dimensional vector spaces for the vertices y of (), together with morphisms K, —
K, for the arrows y — 3 in Q. Given such data, let y1, . . ., yy, be the endpoints of the arrows
of @) starting at x, and define a collection { K ;} of complexes by

K = Cone(Kz - éK ) (4.4.1)
i=1
K| =K, y€Q\{z}

with the morphisms K, — K, identical to K, — K, fory — y"in @ \ {z}, and the natural
inclusions K, = K, — Cone(K, — @ K,;) = K for the reversed arrows y; —  in Q'

This definition can be naturally extended to give a functor F' from the category of complexes
over rep @ to the complexes over rep @', which induces the triangulated equivalence F'. The
action of F' on complexes is given, up to quasi-isomorphism, by (4.4.1).

Lemma 4.4.1 ([9]). F induces a bijection between the indecomposables of rep Q) other than S,
and the indecomposables of rep Q' other than S...

Proof. If M is an indecomposable of rep @, then F'M is indecomposable of D*(Q’) since F is
a triangulated equivalence.

Now let M # S, be an indecomposable of rep Q. The map M (z) — €., M (y;) must be
injective, otherwise one could decompose M = S? & N for some n > 0 and N. Using (4.4.1)
we see that F'M is quasi-isomorphic to the stalk complex supported on degree O that can be
identified with M’ € rep @', given by

M'(x) = coker(M(x) — @ M(yﬁ)
i=1
M'(y) = M(y) y € Q\ {z} (4.4.2)
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Note also that from (4.4.1) it follows that F'S, = S’ [1].
Corollary 4.4.2. j~'T =i~ 'FT forall T € To \ 1.
Proof. This follows from (4.4.2), since 1" does not have S, as summand. ]
Corollary 4.4.3. F induces an isomorphism of posets p : To \ T — Ty \ 15,

Proof. For T € 1 \ 15, define p(T') = F'T. Observe that if 7" has n indecomposable sum-
mands, so does F'T. Moreover, if ,7" € Tg \ 7, then Exth, (FT,FT') ~ Extﬁg(T, T,
hence p(T') € T \ 755 and p(T) < p(T") if T < T". O

Corollary 4.4.4. We have a commutative diagram

To\ T3 LT \TE
75 e T\ = 75

Proof. We have to show the commutativity of the middle triangle, that is, 7, = 7, p. Indeed,
let T € Tg \ 75. Then m,,(T) = basic(j~'T), m,p(T) = basic(i~' FT) and the claim follows
from Corollary 4.4.2. O

Theorem 4.4.5. The posets Iy and I¢y are related via a flip-flop.

Proof. Use Corollaries 4.2.11, 4.3.11 and 4.4.4. O

4.5 Example

Consider the following two quivers ) and )’ whose underlying graph is the Dynkin diagram
Ay. The quiver Q' is obtained from (Q by reflection at the source 4.

Q: * o3 o Q' : e P o3 oy

For 1 < i < j < 4, denote by 75 the indecomposable representation of @ (or Q) supported
on the vertices 7,7 + 1, ..., 7.

Figure 4.1 shows the Hasse diagrams of the posets 7 and 7/, where we used bold font
to indicate the tilting modules containing the simple 44 as summand. The subsets Tél and 7, é‘,
of tilting modules containing 44 are isomorphic to the poset of tilting modules of the quiver As
with the linear orientation.

Note that 7 was computed in [75, Example 3.2], while 7y is a Tamari lattice and the un-
derlying graph of its Hasse diagram is the 1-skeleton of the Stasheff associhedron of dimension
3, see [15, 18].
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Figure 4.2 shows the values of the functions 74 and 7 on 7 and 7y, respectively. The
functions f : To \ Ty — 7 and f': T \ 73 — 75 can then be easily computed.

Finally, the isomorphism p : 7¢ \ Té — Ty \ 7, Q4, is induced by the BGP reflection at the
vertex 4, whose effect on the indecomposables (excluding 44) is given by

11 - 11 12 « 12 13— 14 22 «— 22 23 < 24 33 «— 34.
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13,23,33,34

T

13,23,24,34

11,13,33,34 \T3,22,23,24
13,14,24,34 /

11,13,14,34/ \3,14,22,24

/

14,24,34,44 12,13,14,22

11,14,34,42/ \4,22,24,44 11,12,13,12/
\ 12,14,22 44
11,12,14,42/
14,24,34,44
14,24,33,34/ \4,22,24,44

14,23,24,33

e

13,14,23,33 _ 11,14,33,34

11,14,34,44

12,14,22,44

14,22,23,24
11,12,14,44
13,14,22,23
11,13,14,33

12,13,14,22

11,12,13,14

Figure 4.1: Hasse diagrams of the posets 7 (top) and 7¢ (bottom).
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13,23,33

™~

13,23,33
11,13,33 \3,22,23
13,23,33 /
11,13,33/ \13,22,23
13,23,33 \12,13,22
11,13,35/ \3,22,23 11,12,1:)/
12,13,22

\

11,12,13

13,23,33

/T

13,23,33 13,22,23

13,23,33

11,13,33 12,13,22

wa

11,12,13

13,22,23

13,23,33 _ 11,13,33

13,22,23

/

11,13,33 12,13,22

\ /

11,12,13

Figure 4.2: The functions 74, 7 on 19, 1
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Chapter 5

Universal Derived Equivalences of
Posets of Cluster Tilting Objects

We show that for two quivers without oriented cycles related by a BGP reflection, the posets of
their cluster tilting objects are related by a simple combinatorial construction, which we call a
flip-flop.

We deduce that the posets of cluster tilting objects of derived equivalent path algebras of
quivers without oriented cycles are universally derived equivalent. In particular, all Cambrian
lattices corresponding to the various orientations of the same Dynkin diagram are universally
derived equivalent.

5.1 Introduction

In this chapter we investigate the combinatorial relations between the posets of cluster tilting
objects of derived equivalent path algebras, continuing our investigation in Chapter 4 of the
posets of tilting modules of such algebras.

Throughout this chapter, we fix an algebraically closed field k. Let () be a finite quiver
without oriented cycles and let rep (Q denote the category of finite dimensional representations of
Q over k. The associated cluster category C¢ was introduced in [16] (and in [17] for the A,, case)
as a representation theoretic approach to the cluster algebras introduced and studied by Fomin
and Zelevinsky [28]. It is defined as the orbit category [52] of the bounded derived category
Db(Q) of rep Q by the functor S - [~2] where S : D?(Q) — D’(Q) is the Serre functor and
[1] is the suspension. The indecomposables of C¢y can be represented by the indecomposables
of D?(Q) in the fundamental domain of S - [-2], hence ind Cg = indrep Q U {P,[1] : y € Q}
where P, are the indecomposable projectives in rep ().

Cluster tilting theory was investigated in [16]. A basic object ' € Cq is a cluster tilting
object if Ext}; o (T,T) = 0 and T is maximal with respect to this property, or equivalently, the
number of indecomposable summands of 7" equals the number of vertices of Q. If T'= M & U
is cluster tilting and M is indecomposable, then there exist a unique indecomposable M’ # M
such that 7/ = M’ @ U is cluster tilting. 7" is called the mutation of T with respect to M.
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Denote by 7¢,, the set of all cluster tilting objects. In [48], a partial order on 7¢,,, extending
the partial order on tilting modules introduced in [75], is defined by T < T" if facT D facT".
Here, for M € rep @), fac M denotes the full subcategory of rep () consisting of all quotients of
finite sums of copies of M, and for T" € 7¢,,, facT' = fac T where T € rep @ is the sum of all
indecomposable summands of 1" which are not shifted projectives.

As shown in [48], the map T" +— facT induces an order preserving bijection between
(7cy, <) and the set of finitely generated torsion classes in rep () ordered by reverse inclusion.
Moreover, it is also shown that when @ is Dynkin, (7¢,,, <) is isomorphic to the corresponding
Cambrian lattice defined in [72] as a certain lattice quotient of the weak order on the Coxeter
group associated with Q).

For two partially ordered sets (X, <x), (Y, <y) and an order preserving function f : X —
Y, define two partial orders Si and S{ on the disjoint union X L Y by keeping the original
partial orders inside X and Y and setting

r<ly fl@)<vy y<lze=y<y f@)
with no other additional order relations. We say that two posets Z and Z’ are related via a
Aip-flop if there exist X, Y and f : X — Y as above such that Z ~ (X UY, gi) and 7' ~
(Xuy,<f).
Let x be a sink of  and let Q' be the quiver obtained from @ by a BGP reflection [9] at x,
that is, by reverting all the arrows ending at . Our main result is the following.

Theorem 5.1.1. The posets Ic, and ¢ o are related via a flip-flop.

We give a brief outline of the proof. Let ’ZZZ denote the subset of cluster tilting objects
containing the simple projective S, at x as direct summand. Given T' € ’TCZ , let f(T') be the

mutation of 1" with respect to S;.. In Section 5.2 we prove that the function f : TCxQ — Te, \’Z’cﬂi2
is order preserving and moreover

Te = (T¢, U (Teg \ T¢,), <%) (5.1.1)
Similarly, let 7?2/1} be the subset of cluster tilting objects containing the shifted projective

P![1] at  as direct summand. Given T’ € ’]Z%/”, let g(T') be the mutation of 7" with respect to
P![1]. In Section 5.3 we prove that the function g : Tcg;[ll] — T, \Tcz[,l] is order preserving and
moreover

Tog = (To0 U (Te \ T2L)). <2) (5.12)

In Section 5.4 we relate the two isomorphisms given in (5.1.1) and (5.1.2) by considering,

following [87], the action of the BGP reflection functor on the cluster tilting objects. We prove
the existence of the following commutative diagram with horizontal isomorphisms of posets

Tl’[l]

T
7 Cor

Co

.

T ~ |1
Teg \ T8, —== T, \ T
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from which we deduce Theorem 5.1.1. An example demonstrating the theorem and its proof is
given in Section 5.5.

In Theorem 4.1.1 we have shown a result analogous to Theorem 5.1.1 for the posets 7¢ and
Ty of tilting modules, following a similar strategy of proof. However, there are some important
differences.

First, the situation in the cluster tilting case is asymmetric, as the partition (5.1.1) for a
sink involves the subset of cluster tilting objects containing the corresponding simple, while
the corresponding partition of (5.1.2) at a source involves the subset of cluster tilting objects
containing the shifted projective. In contrast, both partitions for the tilting case involve the
subset of tilting modules containing the simple, either at a source or sink. This asymmetry is
inherent in the proof of (5.1.2), which is not the dual of that of (5.1.1), and also in the analysis
of the effect of the BGP reflection functor.

Second, in the cluster tilting case, the order preserving maps occurring in the flip-flop con-
struction are from the set containing the simple (or shifted projective) to its complement, while
in the tilting case, they are in the opposite direction, into the set containing the simple. As a
consequence, a partition with respect to a sink in the cluster tilting case yields an order of the
form <, while for the tilting case it gives <_.

While two posets Z and Z' related via a flip-flop are in general not isomorphic, they are
universally derived equivalent in the following sense; for any abelian category A, the derived
categories of the categories of functors Z — A and Z’ — A are equivalent as triangulated
categories, see Corollary 3.1.3.

It is known [35, (I1.5.7)] that the path algebras of two quivers ), Q' without oriented cycles
are derived equivalent if and only if Q' can be obtained from @ by a sequence of BGP reflections
(at sources or sinks). We therefore deduce the following theorem.

Theorem 5.1.2. Let Q and Q' be two quivers without oriented cycles whose path algebras are
derived equivalent. Then the posets Ic, and I o are universally derived equivalent.

Since for a Dynkin quiver (), the poset 7¢,, is isomorphic to the corresponding Cambrian
lattice, the above theorem can be restated as follows.

Corollary 5.1.3. All Cambrian lattices corresponding to the various orientations of the same
Dynkin diagram are universally derived equivalent.

In particular, the incidence algebras of the Cambrian lattices corresponding to the various
orientations the same Dynkin diagram are derived equivalent, as the universal derived equiva-
lence of two finite posets implies the derived equivalence of their incidence algebras.

5.2 Cluster tilting objects containing P,

Let z € @) be a vertex, and denote by TCZ the subset of cluster tilting objects containing P, as
direct summand.

Lemma 5.2.1. Let M € rep Q. Then P, € fac M if and only if M contains P, as a direct
summand.
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Proof. Assume that P, € fac M, and let ¢ : M™ — P, be a surjection, for some n > 1. Since
P, is projective, there exists j : P, — M" such that ¢j = 1p,. Let N = imj = im jq.
As (jq)? = jq, we deduce that N is a direct summand of M™ and that j : P, — N is an
isomorphism. Since P, is indecomposable, it is also a summand of M. O

Corollary 5.2.2. LetT € T¢c,,. Then T € %‘UQ if and only if P, € facT.
Corollary 5.2.3. If T € TCJCQ andT' < T, thenT' € Tc“é?,
Proof. LetT € 'Tcgig and 7" € T¢,. If T" < T, then P, € facT C facT"’, hence T" € TCIQ O

Define a map f : TCZ — Tc, \TCZ as follows. Given T' € ’]'C”EQ ,write ' = P, & U and
set f(T) = M @ U where M is the unique other indecomposable complement of U such that
M & U is a cluster tilting object.

Recall that for a tilting module 7" € rep @, we have fac T = T~ where

T+ = {M erep(Q : Extb(T,M) = O}
Lemma 5.2.4. Let T € I¢,,. Then f (T)>T.

Proof. One could deduce the claim from Lemma 2.32 of [48]. Instead, we shall give a direct
proof. Write 7' = P, ® U and f(T) = M @ U. If M is a shifted projective, the claim is clear.
Otherwise, by deleting the vertices of () corresponding to the shifted projective summands of U,
we may and will assume that P, & U and M & U are tilting modules. Therefore

fac(P, @ U) = (P, @ U)*r = U+

where the last equality follows since P, is projective. As M € U=, we get that M ¢ fac(P, @
U), hence fac(M @ U) C fac(P, @ U). O

For the rest of this section, we assume that the vertex x is a sink in . In this case, P, = S,
and ind fac S, = {S,}. Moreover, S, ¢ fac M for any other indecomposable M # S, since
Homg (M, S;) = 0.

Lemma 5.2.5. Let T € Tci, Then ind fac f(T') = indfacT" \ {S;}.
Proof. Write T' =S, @ U and f(T) = M @ U. By the preceding remarks,
ind fac T' = ind fac(S; @ U) = ind fac S, U ind fac U
is a disjoint union {S; } Il ind fac U. By Lemma 5.2.4,
ind fac f(T') = ind fac(M @ U) C ind fac(S, @ U) = {S, } [l ind fac U,
therefore ind fac(M @ U) = ind fac U, as S, ¢ fac M. O

Corollary 5.2.6. Let T € T, and T € Te, \ 7, be such that T' > T. Then T' > f(T).
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Proof. By assumption, facT’ C facT. Moreover, S, ¢ facT’, since T’ ¢ ’TCZ . Hence by
Lemma 5.2.5, ind fac 7" C ind fac f(T), thus 77 > f(T). O

Corollary 5.2.7. The map f : TC% —Te, \ Tc’ig is order preserving and
Ty = (T4, U (Te, \ T3,). <1)

Proof. If T, T' € TCE are such that 77 > T, then by Lemma 5.2.4, f(T7") > T' > T, hence

by Corollary 5.2.6, f(T") > f(T), therefore f is order preserving. The other assertion follows
from Corollaries 5.2.3, 5.2.6 and Lemma 5.2 .4. O]

5.3 Cluster tilting objects containing P,[1]

For M € rep@ and y € @, let M(y) denote the vector space corresponding to y, and let
supp M ={y € Q : M(y) # 0} be the support of M.

Let x € @ be a vertex, and denote by Tczm
the shifted indecomposable projective P,[1] as direct summand.

the subset of cluster tilting objects containing

Lemma 5.3.1. [fT € T5\ and T' > T, then T € T5.\".

Proof. Since T contains P,[1] as summand, we have Ext} o(Px[1,T) = 0, that is,
Homg (P, f) = 0, or equivalently = ¢ supp T.

Now let 77 > T. ‘Then all the modules in fac T" C facT are not supported on z, and in
particular Homg (P,, T") = 0, thus Ext}; o (P2[1],T") = 0. The maximality of 7" implies that it
contains P,[1] as summand. O

Co
T € TCZH], write T = P,[1] ® U and set g(T) = M @ U where M is the unique other
indecomposable complement of U such that M @ U is a cluster tilting object.

Similarly to the previous section, define a map g : R Teg \ ’Z?Qm as follows. Given

Lemma 5.3.2. Let T € Tcg;[l]. Then g(T) < T.

Proof. This is obvious. Indeed, write 7' = P,[1] ¢ U and g(T') = M & U. Then facg(T") =
fac(M ® U) D facU = facT. O

For the rest of this section, we assume that the vertex x is a source. In this case, for any
module M € rep ), we have that S, € fac M if and only if M is supported at x. Therefore we
deduce the following lemma, which can be viewed as an analogue of Corollary 5.2.2.

Lemma 5.3.3. LetT' € Tc,. ThenT € ’Tca;[l] if and only if S, ¢ facT.

Recall that a basic module U € rep @) is an almost complete tilting module if ExtlQ(U ,U) =
0 and the number of indecomposable summands of U equals the number of vertices of () less
one. A complement to U is an indecomposable M such that M @ U is a tilting module. It is
known [43] that an almost complete tilting module U has at most two complements, and exactly
two if and only if U is sincere, that is, supp U = Q.
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Proposition 5.3.4. Let U be an almost complete tilting module of rep QQ not supported on x, and
let M be its unique indecomposable complement to a tilting module. Let X be a torsion class in
rep Q satisfying facU C X and S, € X. Then M € X.

Proof. The natural inclusion j : Q \ {z} — Q induces a pair (ji,7~!) of exact functors

j 7 irepQ — rep(Q )\ {z}) Jr:rep(Q\ {z}) — rep @

where ;7" is the natural restriction and 7 is its left adjoint, defined as the extension of a repre-
sentation of @ \ {z} by zero at x.
Now jij~*U ~ U since U is not supported on z. By adjunction and exactness,

1

Exti oy (57U, 5 'U) ~ Extg,(j1j U, U) = Extg (U, U)

thus 51U is a (basic) tilting module of rep(Q \ {x}). However, by Proposition 4.2.6, j (M &
U) is also a tilting module of rep(Q \ {x}), but not necessarily basic. It follows that j 1M €
add 571U, hence 515 ' M € add 51U = add U.

The adjunction morphism jij ' M — M is injective, and we have an exact sequence

0—jj ‘M —M-—S"—0

for some n > 0. Now S, € X by assumption and j[j_lM € addU C X,hence M € X as X
is closed under extensions. ]

Corollary 5.3.5. Let T € T5" and T' € Te, \ T5.)" be such that T' < T. Then T < g(T).

Proof. Write T' = P,[1]@®U and g(T') = M @U. The assumptions on 7" imply that S, € facT’
and facU = facT C facT".

By deleting the vertices of () corresponding to the shifted projective summands of U, we may
and will assume that M @ U is a tilting module, so that U is an almost complete tilting module.
Applying Proposition 5.3.4 for X = facT’, we deduce that M € facT’, hence facg(T) =
fac(M @ U) C facT". O

(1]

Corollary 5.3.6. The map g : TCQ — Tc, \ ’TCZ[I] is order preserving and

Teo ~ (Toy ' U (Teo \ Ty ). <)

Proof. The claim follows from Lemmas 5.3.1, 5.3.2 and Corollary 5.3.5 as in the proof of Corol-
lary 5.2.7. O

5.4 The effect of a BGP reflection

Let Q) be a quiver without oriented cycles and let x be a sink. Let y1, . ..,y be the endpoints
of the arrows ending at x, and denote by Q" the quiver obtained from @ by reflection at .. For a
vertex y € @, denote by Sy, S; the simple modules corresponding to y in rep @, rep Q" and by
Py, sz, their projective covers.
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The categories rep @ and rep Q' are related by the BGP reflection functors, introduced in [9].
We recollect here the basic facts on these functors that will be needed in the sequel.
The BGP reflection functors are the functors

Ft :rep@Q — rep Q' F~:repQ —repQ
defined by
(F* M) (x) = ker (€D M(y:) — M(2)) (F*M)(y)=M(y) (541
i=1
(F~M)(2) = coker(M'() = D M'(y))  (F~M')(y) = M'(y)
=1

for M € rep@, M’ € repQ’ and y € Q\ {x}, where the maps (F*M)(x) — (FTM)(y;) and
(F~M)(y;) — (F~M)(x) are induced by the natural projection and inclusion.

It is clear that F'" is left exact and F'~ is right exact. The classical right derived functor of
F takes the form

(R'F*M)(z) = coker(@ M(yi) — M(:p)) (R'FTM)(y) =0 (5.4.2)
=1

hence R!F* vanishes for modules not containing S, as direct summand.
The total derived functors

RF* :DYQ) — D'(Q') LF~:D"Q") — D*(Q)

are triangulated equivalences, and their effect on the corresponding cluster categories has been
analyzed in [87], where it is shown that RF" induces a triangulated equivalence Cop — Cgy
whose action on the indecomposables of C is given by

S, — PL[1] M— FtTM P.[1] — S, P,[1] — Py[1] (5.4.3)
with an inverse given by

Sl

— P[1] M — F~M Pl1] — S, P;[l] — Py[1] (5.4.4)

for M # S, M # S, and y € @\ {x}. Moreover, this equivalence induces a bijection
p:Te, — 1c o preserving the mutation graph [87, Proposition 3.2].

Lemma 5.4.1. Let T, T' € Te,. If p(T) < p(T"), then T < T".

—

Proof. By (5.4.4), facT = facF~p(T) if P.[1] is not a summand of p(7T), and facT =

fac(Sy @ F~p(T)) if P.[1] is a summand of p(7). Note that by Lemma 5.3.1, the latter
case implies that P.[1] is also a summand of p(7”), hence in any case it is enough to ver-
ify that if M, N € rep @’ satisfy fac N C fac M, then fac F~ N C facF~ M. Indeed,
since F'~ is right exact, it takes an exact sequence M" — N — ( to an exact sequence
(F~M)" — F~N — 0. 0
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egs . . . ~ 1]
Proposition 5.4.2. p induces an isomorphism of posets ’Z’ng2 = TCQ/

Proof. Note that by (5.4.3), P(%Jég ) = ’Z;i?[,l]. In view of Lemma 5.4.1, it remains to show that if
T,T € g, satisty T' < T', then p(T) < p(T").
Write 7 = S,®U and T = S, ®U’. Then fac p(T) = fac F+U and fac p(T") = fac FTU,
and we need to show that F*U’ € fac FTU.
Indeed, since facT” C fac T, the proof of Lemma 5.2.5 shows that U’ € fac U, hence there
exists a short exact sequence
0->K—-U"3U -0

for some n > 0 and K € repQ. Applying Homg(—, S;) to this sequence, noting that
Extb(U’,Sx) = 0 since 7" € 7¢,,» we get that Homg(U", S;) — Homg(K, S;) is surjec-
tive, hence K does not contain .S,, as summand (otherwise U™ would contain .S, as summand).
Therefore the exact sequence

FYU™ - F'U' - R'FTK =0
shows that U’ € fac FTU. O
Proposition 5.4.3. p induces an isomorphism of posets Ic,, \ ’TC‘”Q =T o \ Tci?[,l]-

Proof. For arepresentation M € rep @, let Qs and @, be the subquivers of () and @’ obtained
by deleting the vertices outside supp M U {x}. The quivers Q,, and Qs are related via a BGP
reflection at x, and we denote by F+M : repQum — rep @y, the corresponding reflection
functor. The restriction functors i ! : repQ — rep Qa7 and j !

by the natural embeddings i : Qa — Q and j : Q), — Q' satisfy

: rep Q' — rep Q') induced

JYFTM = FY

1
Qut M,

as can be easily verified using (5.4.1).

As in the proof of Proposition 5.4.2, it is enough to show that if T, 7" € 7Z¢,, \ TCIQ satisfy
T < T', then p(T) < p(1"). In view of the preceding paragraph, we may assume that ) =
suppT U {x}.

We consider two cases. First, assume that x € supp T. ThenT = T'is a tilting module,
p(T) = F*T and fac p(T") = fac FTT" or fac p(T") = fac(S,, & FTT") according to whether
T € supp T’ or not, hence it is enough to show that S!, & F +T" € fac FT.

By assumption, T' € facT = T*. Since T does not contain S, as summand, F7T is
a tilting module and FYT' ¢ (FYT)* = fac F*T (see Corollary 4.4.3). Moreover, S, €
fac FTT, as FT is sincere.

For the second case, assume that x ¢ supp T. Then T = Pl @ T and by Lemma 5.3.1,
T' = P,[1]®T' & P[1] where P is a sum of projectives other than P,. By (5.4.3), p(T) = S &
F*T and p(T") =5, @ F+T'@ P'[1], hence it is enough to show that FTT" € fac(S, & F*+T).

Indeed, since 7" € fac T, there exists a short exact sequence

0K —=T"—=T —0
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for some n > 0 and K € rep Q). Applying the functor ', noting that T does not contain Sy as
summand, we get

0 FTK - F™T"  F*T" 5 R'FTK — R'FTT" = 0.

By (5.4.2), Rlli”rK = SQ’C”/ for some n’ > 0, hence F*f/ is an extension of S;"I with a
quotient of F+1™. The result now follows, as fac(S, & F1T) is closed under extensions. [

Corollary 5.4.4. We have a commutative diagram

T (1]
7—CQ ~ 7.CQ/

P
P 1
Teo \ Ty —2> Teg \ T,
Proof. By Propositions 5.4.2 and 5.4.3, p induces the two horizontal isomorphisms. For
Tels, | (T) is defined as the mutation of 7" with respect to S, and g(p(7')) is defined as
the mutation of p(7') with respect to P,.[1], which is, by (5.4.3), the image of S, under the trian-

gulated equivalence Cg — C¢. Therefore the commutativity of the diagram follows by the fact
that p preserves the mutation graph [87, Proposition 3.2]. O

Theorem 5.4.5. The posets Ic,, and Ic o are related via a flip-flop.

Proof. Use Corollaries 5.2.7, 5.3.6 and 5.4.4. O

5.5 Example

Consider the following two quivers () and Q" whose underlying graph is the Dynkin diagram
As. The quiver ' is obtained from ) by a BGP reflection at the sink 3.

Q: 01— —>e3 Q : 0 ——>e<« o3

We denote the indecomposables of the cluster categories Cp and Cg by specifying their
dimension vectors. These consist of the positive roots of As, which correspond to the indecom-
posable representations of the quivers, together with the negative simple roots —e;, —es, —es
which correspond to the shifted projectives.

Figure 5.1 shows the Hasse diagrams of the posets TCQ and 7¢ o where we used bold font

to indicate the subsets ’TC?’Q and ’TCBQ[}] of cluster tilting objects containing the simple S3 and the

shifted projective P4[1] as summand, respectively.

The posets 7¢,, and 7¢ o are Cambrian lattices, and can be realized as sublattices of the weak
order on the group of permutations on 4 letters, see [72, Section 6]. Moreover, the underlying
graph of their Hasse diagrams is the 1-skeleton of the three-dimensional Stasheff associhedron.

7c,, is a Tamari lattice, corresponding to the linear orientation on A3.
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The BGP reflection at the vertex 3, whose action on the dimension vectors is given by

v ifve{—e,—e}
UV —
s3(v) otherwise

where s3 is the linear transformation specified by

0
1
-1

)

o = O

1
sg(v)=v-10
0

. . . o~ 3[1 ~ 3[1
induces isomorphisms 7-632;) — TCQ[/] and 7c,, \%3:9 — T, \TCcE/]

tions at S3 and P4[1].

compatible with the muta-
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Figure 5.1: Hasse diagrams of the posets 'ZE;Q (top) and 7¢ o (bottom).
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Chapter 6

Bounds on the Global Dimension of
Certain Piecewise Hereditary
Categories

We give bounds on the global dimension of a finite length, piecewise hereditary category in
terms of quantitative connectivity properties of its graph of indecomposables.

We use this to show that the global dimension of a finite dimensional, piecewise hereditary
algebra A cannot exceed 3 if A is an incidence algebra of a finite poset or more generally, a
sincere algebra. This bound is tight.

6.1 Introduction

Let A be an abelian category and denote by D°(A) its bounded derived category. A is called
piecewise hereditary if there exist an abelian hereditary category H and a triangulated equiv-
alence D?(A) ~ D’(H). Piecewise hereditary categories of modules over finite dimensional
algebras have been studied in the past, especially in the context of tilting theory, see [35, 40, 42].

It is known [40, (1.2)] that if A is a finite length, piecewise hereditary category with n non-
isomorphic simple objects, then its global dimension satisfies gl.dim. A < n. Moreover, this
bound is almost sharp, as there are examples [54] where .4 has n simples and gl.dim A = n— 1.

In this chapter we show how rather simple arguments can yield effective bounds on the
global dimension of such a category .4, in terms of quantitative connectivity conditions on the
graph of its indecomposables, regardless of the number of simple objects.

Let G(.A) be the directed graph whose vertices are the isomorphism classes of indecompos-
ables of A, where two vertices @, ) are joined by an edge @ — Q' if Hom 4(Q, Q") # 0.

Letr > 1andlete = (egg,...,&,—1) be a sequence in {+1,—1}". An e-path from Q to @’
is a sequence of vertices Qo = @, @1, ..., Qr = Q such that Q; — Q;11 in G(A) ife; = +1
and Qi—i—l — Qz if g = —1.

For an object Q of A, let pd 4 Q = sup{d : Extfﬁ(Q, Q') # 0 for some '} and id4 Q =
sup{d : Extfa(Q’ , Q) # 0 for some @'} be the projective and injective dimensions of (), so that
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gl.dim A = supg pd 4 Q.

Theorem 6.1.1. Letr A be a finite length, piecewise hereditary category. Assume that there exist
r > 1, e € {1,—1}" and an indecomposable QQy such that for any indecomposable Q) there
exists an e-path from Qq to Q.

Then gl.dim A <r +1and pd 4 Q +ida Q < r + 2 for any indecomposable Q).

We give two applications of this result for finite dimensional algebras.

Let A be a finite dimensional algebra over a field k, and denote by mod A the category
of finite dimensional right A-modules. Recall that a module M in mod A is sincere if all the
simple modules occur as composition factors of M. The algebra A is called sincere if there
exists a sincere indecomposable module.

Corollary 6.1.2. Let A be a finite dimensional, piecewise hereditary, sincere algebra. Then
gl.dim A < 3 and pd Q +id Q < 4 for any indecomposable module () in mod A.

Let X be a finite partially ordered set (poset) and let k be a field. Recall from Section 1.2.5
that the incidence algebra kX is the k-algebra spanned by the elements e,,, for the pairs z < y
in X, with the multiplication defined by setting e;ye,. = e, wheny = y’ and zero otherwise.

Corollary 6.1.3. Let X be a finite poset. If the incidence algebra kX is piecewise hereditary,
then gl.dim kX < 3 and pd Q + id Q < 4 for any indecomposable kX -module Q).

The bounds in Corollaries 6.1.2 and 6.1.3 are sharp, see Examples 6.3.2 and 6.3.3.
The chapter is organized as follows. In Section 6.2 we give the proofs of the above results.
Examples demonstrating various aspects of these results are given in Section 6.3.

6.2 The proofs

6.2.1 Preliminaries

Let A be an abelian category. If X is an object of A, denote by X[n] the complex in D°(A)
with X at position —n and 0 elsewhere. Denote by ind A, ind D?(A) the sets of isomorphism
classes of indecomposable objects of .4 and D’ (A), respectively. The map X +— X[0] is a fully
faithful functor A — DP(.A) which induces an embedding ind A < ind D°(A).

Assume that there exists a triangulated equivalence F : D*(A) — DP(H) with H hereditary.
Then F induces a bijection ind D*(A) ~ ind D (H), and we denote by ¢ : ind A — ind HxZ
the composition

ind A — ind D’(A) = ind D°(H) = ind H x Z

where the last equality follows from [53, (2.5)].

If @ is an indecomposable of A, write vr(Q) = (fr(Q),nr(Q)) where fr(Q) € ind H
and np(Q) € Z, so that F(Q[0]) ~ fr(Q)[nr(Q)] in D*(H). From now on we fix the equiva-
lence F', and omit the subscript F'.

Lemma 6.2.1. The map f : ind A — ind H is one-to-one.
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Proof. 1f ), Q' are two indecomposables of A such that f(Q), f(Q') are isomorphic in H, then
Q[n(Q") — n(Q)] ~ Q'[0] in D°(A), hence n(Q) = n(Q’), and Q ~ Q' in A. O

As a corollary, note that if A and H are two finite dimensional algebras such that
Db(mod A) ~ DP(mod H) and H is hereditary, then the representation type of H dominates
that of A.

We recall the following three results, which were introduced in [35, (IV,1)] when H is the
category of representations of a quiver.

Lemma 6.2.2. Let Q, Q' be two indecomposables of A, Then

Bxtiy (Q, Q') ~ Bxti @ Q) (£, /(@)

Corollary 6.2.3. Let Q, Q' be two indecomposables of Awith Hom 4(Q, Q') # 0. Thenn(Q')—
n(Q) € {0,1}.

Lemma 6.2.4. Assume that A is of finite length and there exist integers ng, d such that ny <
n(P) < ng + d for every indecomposable P of A.

If Q is indecomposable, then pd 4 Q < n(Q) —no+ 1landidsQ < ng+d—n(Q). In
particular, gl.dim A < d.

Proof. See [35, 1V, p.158] or [40, (1.2)]. O

6.2.2 Proof of Theorem 6.1.1

Letr > 1,e = (g0,...,6,—1) and Qo be as in the Theorem. Denote by r the number of
positive &;, and by r_ the number of negative ones. Let F' : D*(A) — D’(H) be a triangulated
equivalence and write f = fp,n =np.

Let ) be any indecomposable of A. By assumption, there exists an e-path Qq, Q1, ..., Q, =
Q. so by Corollary 6.2.3, n(Q;+1) — n(Q;) € {0,e;} for all 0 < i < r. It follows that
n(Q) — n(Qo) = Y=y ase; for some a; € {0, 1}, hence

n(Qo) —r— < n(Q) <n(Qo) + 7+

and the result follows from Lemma 6.2.4 with d = r + 1 and ny = n(Qp) — r—.

6.2.3 Variations and comments

Remark 6.2.5. The assumption in Theorem 6.1.1 that any indecomposable () is the end of an
e-path from Qg can replaced by the weaker assumption that any simple object is the end of such
a path.

Proof. Assume that €,_1 = 1 and let () be indecomposable. Since () has finite length, we can
find a simple object S with g : S — Q. Let Qq,Q1,...,Qr_1,5 be an e-path from Qg to S
with f._1 : Q,—1 — S. Replacing S by ) and f,_1 by gf,_1 # 0 gives an e-path from Qg to
Q.

The case €,,_1 = —1 is similar. L]
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Remark 6.2.6. Let G(A) be the undirected graph obtained from G(A) by forgetting the direc-
tions of the edges. The distance between two indecomposables ) and Q)’, denoted d(Q, Q'),
is defined as the length of the shortest path in G (A) between them (or +oo0 if there is no such
path).

The same proof gives that [n(Q) — n(Q’)| < d(Q,Q’) for any two indecomposables Q
and Q'. Let d = supg o d(Q, Q') be the diameter of G(A). When d < oo, infgn(Q) and
supg n(Q) are finite, and by Lemma 6.2.4 gl.dim A < d + 1 and pd 4 Q +id4 Q < d + 2 for
any indecomposable ().

Remark 6.2.7. The conclusion of Theorem 6.1.1 (or Remark 6.2.6) is still true under the slightly
weaker assumption that A is a finite length, piecewise hereditary category and A = ®;_; A; isa
direct sum of abelian full subcategories such that each graph G(.A;) satisfies the corresponding
connectivity condition.

6.2.4 Proof of Corollary 6.1.2

Let A be sincere, and let 51, ..., .S, be the representatives of the isomorphism classes of simple
modules in mod A. Let Py, .. ., P, be the corresponding indecomposable projectives and finally
let M be an indecomposable, sincere module.

Take r = 2 and ¢ = (—1,+1). Now observe that any simple S; is the end of an e-path from
M, as we have a path of nonzero morphisms M «— P; — S; since M is sincere. The result now
follows by Theorem 6.1.1 and Remark 6.2.5.

6.2.5 Proof of Corollary 6.1.3

Let X be a poset and k a field. A k-diagram F is the data consisting of finite dimensional
k-vector spaces F(x) for x € X, together with linear transformations r,,/ : F(x) — F (') for
all » < o/, satisfying the conditions 7., = 17(y) and 7y = 7grpnrye forall z < 2’ < 2’ see
Section 3.2.1.

The category of finite dimensional right modules over kX can be identified with the category
of k-diagrams over X, see Lemma 1.2.7. A complete set of representatives of isomorphism
classes of simple modules over kX is given by the diagrams S, for x € X, defined by

Sx(y)Z{k ify==x

0 otherwise

with r,,, = 0 forall y < 3. A module F is sincere if and only if F(z) # 0 forall z € X.
The poset X is connected if for any z,y € X there exists a sequence x = zg, T1,...,Tn =Y
such that for all 0 < ¢ < n either x; < ;41 or x; > Tjy1.

Lemma 6.2.8. If X is connected then the incidence algebra kX is sincere.

Proof. Let kx be the diagram defined by kx (x) = k forall z € X and r,,» = 1j forall x < 2.
Obviously kx is sincere. Moreover, kyx is indecomposable by a standard connectivity argument;
ifkx =F @ F writeV = {z € X : F(x) # 0} and assume that V not empty. If x € V and
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x < y, then y € V, otherwise we would get a zero map k£ & 0 — 0 & k and not an identity map.
Similarly, if y < x then y € V. By connectivity, V = X and F = kx. O

If X is connected, Corollary 6.1.3 now follows from Corollary 6.1.2 and Lemma 6.2.8.
For general X, observe that if {X;}; ; are the connected components of X, then the category
mod kX decomposes as the direct sum of the categories mod kX, and the result follows from
Remark 6.2.7.

Corollary 6.2.9. Let X and Y be posets such that D*(kX) ~ D°(kY) and gl.dim kY > 3.
Then kX is not piecewise hereditary.

6.3 Examples

We give a few examples that demonstrate various aspects of global dimensions of piecewise
hereditary algebras. In these examples, k£ denotes a field and all posets are represented by their
Hasse diagrams.

Example 6.3.1 ([54]). Letn > 2, Q™ the quiver
0251 % 2%,  2np

and I(™) be the ideal (in the path algebra Q™)) generated by the paths a;aiq 1 for 1 < i < n.
By [35, (IV, 6.7)], the algebra A = kQ(™ /I(™) is piecewise hereditary of Dynkin type A, 1.

For a vertex 0 < i < n, let S;, P;, I; be the simple, indecomposable projective and inde-
composable injective corresponding to ¢. Then one has P,, = S, Ip = Sp and for 0 < i < n,
P; = I, with a short exact sequence 0 — S; 1 — P; — 5; — 0.

The graph G(mod A(”)) is shown below (ignoring the self loops around each vertex).

VAVAVARERNIZAN

Regarding dimensions, we have pd S; = n—1,id.S; = ifor0 <i < n,andpd P, =id P, =
0 for 0 <@ < n, so that gl.dim A = pand pdQ +id Q < n for every indecomposable ).
The diameter of G(mod A(™) is n + 1.

The following two examples show that the bounds given in Corollary 6.1.3 are sharp.

Example 6.3.2. A poset X with kX piecewise hereditary and gl.dim kX = 3.
Let X,Y be the two posets:

./.>2.\. \.H./
NN / N
X Y
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Then D (kX) ~ Db(kY), gl.dim kX = 3, gl.dim kY = 1.

Example 6.3.3. A poset X with kX piecewise hereditary and an indecomposable F such that
Let X, Y be the following two posets:

NN N
NSNS s

X Y

Then D*(kX) ~ DP(kY), gl.dimkX = 2, gl.dimkY = 1 and for the simple S, we have

We conclude by giving two examples of posets whose incidence algebras are not piecewise
hereditary.

Example 6.3.4. A product of two trees whose incidence algebra is not piecewise hereditary.

By specifying an orientation w on the edges of a (finite) tree 7', one gets a finite quiver
without oriented cycles whose path algebra is isomorphic to the incidence algebra of the poset
X, defined on the set of vertices of T" by saying that z < y for two vertices x and y if there is
an oriented path from x to .

A poset of the form X7, is called a tree. Equivalently, a poset is a tree if and only if the
underlying graph of its Hasse diagram is a tree. Obviously, gl.dim kX7, = 1, so that kX7, is
trivially piecewise hereditary. Moreover, while the poset X7, may depend on the orientation w
chosen, its derived equivalence class depends only on 7.

Given two posets X and Y, their product, denoted X X Y, is the poset whose underlying
setis X x Y and (z,y) < (2/,¢)ifx < 2/ andy < 3/ where z,2’ € X and y,y/ € YV
(cf. Definition 1.3.27). It may happen that the incidence algebra of a product of two trees,
although not being hereditary, is piecewise hereditary. Two notable examples are the product of
the Dynkin types A X As, which is piecewise hereditary of type D, and the product Ay x As
which is piecewise hereditary of type Eg.

Consider X = Ay x As and Y = D, with the orientations given below.

N NS
NS |
X Y

Then gl.dimkX = 2, gl.dimkY = 1 and D*(kX) ~ D’(kY), hence D°(k(X x X)) ~
D (k(Y x Y)). But gl.dim k(X x X) = 4, so by Corollary 6.2.9, Y x Y is a product of two
trees of type D4 whose incidence algebra is not piecewise hereditary.
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Example 6.3.5. The converse to Corollary 6.1.3 is false.
Let X be the poset

o —— 0 —> 0

e

o ———0 —>0

Then gl.dim kX = 2, hence pd;, x F < 2, idyx F < 2 for any indecomposable F, so that
X satisfies the conclusion of Corollary 6.1.3. However, kX is not piecewise hereditary since
Ext? (kx,kx) = k does not vanish (see [35, (IV, 1.9)]). Note that X is the smallest poset
whose incidence algebra is not piecewise hereditary.
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Chapter 7

On the Periodicity of Coxeter
Transformations and the
Non-negativity of Their Euler Forms

We show that for piecewise hereditary algebras, the periodicity of the Coxeter transformation
implies the non-negativity of the Euler form. Contrary to previous assumptions, the condition of
piecewise heredity cannot be omitted, even for triangular algebras, as demonstrated by incidence
algebras of posets.

We also give a simple, direct proof, that certain products of reflections, defined for any
square matrix A with 2 on its main diagonal, and in particular the Coxeter transformation cor-
responding to a generalized Cartan matrix, can be expressed as —AjrlAt_, where A,, A_ are
closely associated with the upper and lower triangular parts of A.

7.1 Introduction

Let V be a free abelian group of finite rank and let (-,-) : V x V — Z be a non-degenerate
Z-bilinear form on V. The Coxeter transformation ® : V' — V corresponding to (-, -) is defined
via the equation (x,y) = — (y, ®z) for x,y € V [61].

In this chapter we study the relations between positivity properties of the form (-, -) and
periodicity properties of its Coxeter transformation ®. Recall that (-, -) is positive if (z,x) > 0
for all 0 # = € V, non-negative if (x,z) > 0 for all z € V and indefinite otherwise. The
transformation @ is periodic if ®™ equals the identity I for some integer m > 1 and weakly
periodic [19] if (&™ — I)™ = 0 for some integers m,n > 1.

Implications in one direction are given in the paper [79], where linear algebra techniques are
used to show that the Coxeter matrix @ is periodic if (-, -) is positive and weakly periodic if (-, -)
is non-negative. It is much harder to establish implications in the other direction. As already
noted in [79], even if @ is periodic, (-, -) may be indefinite, so additional constraints are needed.

An alternative definition of the Coxeter matrix is as a certain product of reflections defined
by a generalized Cartan matrix [1, 77], whereas the definition given above is —C~1C* where C
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is the matrix of the bilinear form.

We claim similarly to [23], and give a simple, direct proof, that for any square matrix A
with 2 on its main diagonal, the product of the n reflections it defines can be expressed as
—AjrlAt, where A, A_ are closely associated with the upper and lower triangular parts of
A, see Section 7.2. This claim can be generalized to products in arbitrary order, and no other
conditions on A, such as being generalized Cartan, bipartite [1] or symmetric [45], are needed.
In particular, when (-, -) is triangular, ® can be written as a product of the reflections defined by
the symmetrization of (-, -).

Further connections between periodicity and non-negativity are achieved when we restrict
ourselves to pairs (V, (-,-)) for which there exists a finite dimensional k-algebra A over an
algebraically closed field k, having finite global dimension, such that V' = Ky(mod A) and (-, )
coincides, under that isomorphism, with the Euler form (-,-), of A. Here mod A denotes the
category of finite dimensional right A-modules. Since gl.dim A < oo, the form (-, -) , is non-
degenerate, hence its Coxeter transformation ®, is well-defined and coincides with the image in
Ko(mod A) of the Auslander-Reiten translation on the bounded derived category D°(mod A).

In Section 7.3 we show that if A is piecewise hereditary, i.e. its bounded derived category
Db(mod A) is equivalent as a triangulated category to D?(H) for a hereditary abelian category
H, then the periodicity of ®, implies the non-negativity of (-, -) ,.

In that Section, we also show that when A is an incidence algebra of a poset X, the Euler
form (-, -), and its Coxeter transformation ®, can be explicitly described in terms of the com-
binatorics of X.

Previously, [24] claimed that the condition of (-, -) being triangular, that is, its matrix with
respect to some basis of V' is upper triangular with ones on the main diagonal, is enough for the
periodicity of ® to imply the non-negativity of (-,-). We find however examples of incidence
algebras of posets negating this claim, see Section 7.4.

7.2 Coxeter transformations of bilinear forms

7.2.1 The definition of the Coxeter matrix

Let V be a free abelian group of finite rank and let (-,-) : V x V — Z be a non-degenerate
Z-bilinear form on V. Recall that (-, -) is positive if (v,v) > 0 for all 0 # v € V, non-negative
if (v,v) > 0 for all v € V and indefinite otherwise. The Coxeter transformation ® : V. — V
corresponding to (-, -) is defined via the equation (v, w) = — (w, ®v) for all v, w € V [61].

We consider the elements of Z" as column vectors, and denote by M? the transpose of a
matrix M. Let {e;}_; be the standard basis of Z". By choosing a Z-basis vy, ..., v, of V,
we may identify V' with Z" and (-, -) with the form (-, ), defined by (z,y), = z'Cy where
C € GLy(Z) is the matrix whose entries are C;; = (v;,vj) for 1 < 4, j < n. In other words,
(vi,v;) = (€, ;). Under this identification, the matrix of ® is —C~*C", hence we define the
Coxeter matrix ®¢ of a matrix C' € GL,(Z) to be ¢ = —C~1C".

Note that v = —C~!C% if and only if (C 4+ C*)v = 0, hence the geometric multiplicity
of the eigenvalue 1 in ¢ equals the dimension of the radical of the symmetrized bilinear form
C+C.
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Definition 7.2.1. A matrix ® € GL,(Z2) is periodic if @™ = I for some m > 1. ® is weakly
periodic if for some m > 1, & — [ is nilpotent.

Definition 7.2.2. A matrix C' € GL,,(Z) is unitriangular if C is upper triangular and Cy; = 1
forl <i<n.

Relations between the positivity of the bilinear form (-, -)  and the periodicity of &< have
been studied in [24, 79] and are summarized as follows:

Theorem 7.2.3. Let C € GL,(Z). Then:

1. [79, (2.8)] ®¢ is periodic if (-, ) is positive.

2. [79, (3.4)] ®¢ is weakly periodic if (-, ) is non-negative.

However, [79, (3.8)] is an example of a matrix whose Coxeter matrix is periodic but the
corresponding bilinear form is indefinite.
7.2.2 Alternative definition as a product of reflections

Following [1, 8, 77], we review an alternative definition of the Coxeter matrix as a product of
reflections.
Let A be an n x n matrix with integer entries satisfying

Ay =2 1<i<n (A1)
Aij =0 if and only if Aij = 0, 1 < Z,] S n (AZ)

The primitive graph of A (cf. [8]) is an undirected graph with n vertices, where two vertices
i # j are connected by an edge if A;; # 0. The matrix A is indecomposable if its primitive
graph is connected.

Define reflections r1, ..., T, by

ri(ej) =€ — Aijei 1 < j <n (7.2.1)

In other words, 7; is the matrix obtained from the identity matrix by subtracting the i-th row of
A. Denote by I the n x n identity matrix.

Lemma 7.2.4. Let A be a matrix satisfying (Al).
a. r?z[forlgign.

b. If A satisfies also (A2), then r;rv; = rjr; for any two non-adjacent vertices i, j on the
primitive graph of A.

Proof. Since A;; = 2, we have r;(e;) = —e;, thus
T?(et) = Ti(et - Aitei) =e; — Aire; — AitTi(ei) = €t

for all 1 <t < n, and the first assertion is proved.
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If A;; = 0 then r;j(e;) = e;j. The assumptions on A imply that if 4, j are not adjacent, then
ri(ej) = e; and 1;(e;) = e;. Therefore, if 1 <t < n,

7“1'7’]' (€t) = Ti<6t — Ajtej) = €t — Aitei — Ajtej
is symmetric in ¢ and j, hence r;r; = r;7;. ]
Consider the following two additional properties:

Ai; <0 forall i # j (A3)
The primitive graph of A is bipartite (A4)

Definition 7.2.5. A matrix A is a generalized Cartan matrix if it satisfies (A1), (A2) and (A3).
A matrix A is bipartite if it satisfies (A1), (A2) and (A4).

For a generalized Cartan matrix A and a permutation 7 of {1, 2,...,n}, a Coxeter transfor-
mation is defined in [77] by ®(A, m) = 7(1)Tr(2) * * * Tr(n)- For a bipartite matrix A, let 31 113,
be a corresponding partition of {1,2,...,n} and consider R4 = R; Ry where Ry, = HieEk o

k = 1,2, see [8]. Note that by Lemma 7.2.4, the matrices R; do not depend on the order of
reflections within each product. Note also that R 4 equals ®(A, 7) for a suitable 7.

Recall that the spectrum of a square matrix ® with complex entries, denoted spec(®),
is the set of (complex) roots of the characteristic polynomial of ®. Let p(®) =
max {|A| : A € spec(®)} be the spectral radius of .

We recall two results on the spectrum of Coxeter transformations corresponding to general-
ized Cartan and bipartite matrices.

Theorem 7.2.6 ([77]). Let A be an indecomposable generalized Cartan matrix, m € S,. If A is
not of finite or affine type, then p(®(A, 7)) > 1.

Theorem 7.2.7 ([1, p. 63],[8, p. 344]). Let A be a bipartite matrix.
a. \? € spec(Ry) ifand only if A + 2 + A1 € spec(A).

b. If A is also symmetric, then spec(R4) C ST UR.

7.2.3 Linking the two definitions

Let R be any commutative ring with 1 and let ey, ..., e, be a basis of a free R-module of rank
n. Let A be an n X n matrix with entries in R satisfying (A1) (where 2 means 1+ 1), and define
the reflections r1, ..., 7, asin (7.2.1). When we want to stress the dependence of the reflections

A A

on A, we shall use the notation ", ..., 7"

Lemma 7.2.8. Let 1 < s < n. Then for every1 <t <n,

(7*1 “ e Ts)(et) = et —|— Z(—l)k Z Ai1i2 LR Aik_likAikteil
k=1

1<d) <ip << <s
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Proof. By induction on s, the case s = 1 being just the definition of 71, and for the induction
step, expand 7541 (et) as ez — Ag11 +es+1 and use the hypothesis for s.

(1 -rsrspr)(er) = (r1---7ms)(er) — Aspre(ry---7rs)(esy1)

s
=e; — AS+17t65+1 + Z(—l)k Z Ai1i2 - Aik,ﬂkAikteil
k=1

1<i1 <2< <1, <8

S
+ Z(—l)kH Z Aiyig = Ay i Aig s+1Ast10€4
k=1

1< <9< <1 <8

s+1
k
=e— Y (-1) ) Aivig -+ Aiy i Aigees
k=1 1<t <<+ <ip <s+1

Define two n X n matrices A, and A_ by

Aij 1< Aji 1< ]
(Ap)ij=q1  i=j (A =41 i=j
0 i>j 0 i>j

Then A = A, + A! , and one can think of A, A_ as the upper and lower triangular parts
of A. The matrices A, and A_ are invertible since A, — I and A_ — I are nilpotent. Note that
A is symmetric if and only if Ay = A_

Theorem 7.2.9. If A satisfies (A1), then 4\ - .. rd = —AI_lAE.

n

Proof. By Lemma 7.2.8 with s = n,
n
(7’1 T Tn)(et) =e+ Z(_l)k Z Ai1i2 T Aik_ﬂkAikteil
k=1 1<i1 <2 <-<ip <n

This can be written in matrix form, using the definition of A, as follows:

ricern =14+ (“1)MAL —DF A
=I-(I-(Ay -+ (AL —D)?—..)A
I—A7TM AL+ AN ) =—A7TAY
O

Remark 7.2.10. Theorem 7.2.9 is still true when we drop the condition (A1) and slightly change
the definition of A_, by (A_);; = Ai; — 1 for 1 < < n. However, in that case the matrices r;
are no longer reflections.
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Theorem 7.2.9 provides a link between the definition of the Coxeter matrix as a specific
automorphism of the bilinear form and its definition as a product of n reflections, as shown by
the following corollary.

Corollary 7.2.11. Let C € GL,,(Z) be a unitriangular matrix. Then ®¢c = ®(C + C',id), that
is, oo = ri'rd' - for A=C + C".

In fact, this corollary is proved in [45] for the case where ¢ is a Coxeter element in an
arbitrary Coxeter group of finite rank represented as a group of linear transformations on a real
inner product space, so that the Cartan matrix A is symmetric.

Proof. Apply Theorem 7.2.9 for the matrix A = C' + C?, which satisfies (A1), (A2) and A, =
A_=C. O

Denote by S,, the group of permutations on {1,2,...,n} and let 7 € S,,. One could deduce
a generalized version of Theorem 7.2.9 for the product of the n reflections in an arbitrary order
by proving an analogue of Lemma 7.2.8 for arbitrary 7. Instead, we will derive the generalized
version from the original one using permutation matrices.

Define the permutation matrix Py by Pr(e;) = eq(; forall 1 <4 < n. Note that P~ L= pL.
Given a matrix A, let A, denote the matrix P! AP, so that (Ar)ij = Ar(iyr(j)- Obviously, if
A satisfies (A1), so does A.

Lemma 7.2.12. Let1 < ¢ <n. Then r?" =plpA

™ 7r()

Proof. Foralll <t <n,

(P;lr?(i)Pw) (er) = Pt (entry = Aniiyn(nn(iy) = €t — Aniyn(yes = i (er)

Define two n X n matrices A ;. and A, _ by

Ay i) <7 l(j) i) < 7 ()
(Aﬂ-’Jr)ij =<1 1= =7
0 otherwise otherwise

Direct calculation shows that A, = Pr(Az)+Prt, Ar— = Pr(Ag)-Pland A = A, 4 +
AL

Corollary 7.2.13. Let A satisfy (Al) and let m € S,,. Then
A A A -1
7’71_(1)7"71,(2) e TTF(TL) = _ATF,—‘,-A:JT,f
Proof. By Lemma 7.2.12 and Theorem 7.2.9 applied for A,
7"?(1)74?(2) e Tﬁ(n) = P7|— (?”147\'7"547" PN 'f’;?ﬂ'> P7T_1 = —PW(AW)II(Aﬂ)t_P;
= — (Pe(An) 7' PY) (Pr(An). Pr) = —AZL AL
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7.3 Periodicity and non-negativity for piecewise hereditary alge-
bras and posets

Let k£ be a field, and let A be an abelian k-category of finite global dimension with finite
dimensional Ext-spaces. Denote by DY(A) its bounded derived category and by Ko(A) its
Grothendieck group. The expression

(X,Y) 4= (1) dimy, Homps 4 (X, YTi])
i€EZ

is well-defined for X,Y € DY(A) and induces a Z-bilinear form on Kg(.A), known as the
Euler form. When (-, -) 4 is non-degenerate, the unique transformation ® 4 : Ko(A) — Ko(A)
satisfying (x,y) 4 = — (y, Pax) 4 forall z,y € Ko(A) is called the Coxeter transformation of
A. For more details we refer the reader to [62].

Two such abelian k-categories A and B are said to be derived equivalent if there exists
a triangulated equivalence F' : D’(A) ~ D’(B). In this case, the forms (-,-) , and (-, ) are
equivalent over Z, hence the positivity properties of the Euler form and the periodicity properties
of the Coxeter transformation are invariants of derived equivalence.

Let A be a finite dimensional algebra of finite global dimension over an algebraically closed
field k, and consider the k-category mod A of finitely generated right modules over A. Denote
by D*(A) its bounded derived category, by Ko(A) its Grothendieck group and by (-, ), the
Euler form. Then K((A) is free of finite rank, with a Z-basis consisting of the representatives of
the isomorphism classes of simple modules in mod A. The form (-, ) , is non-degenerate, and its
Coxeter transformation ®, coincides with the linear map on K(A) induced by the Auslander-
Reiten translation on Db(A). For more details see [35, (II.1)], [76, (2.4)] or [62].

7.3.1 Path algebras of quivers without oriented cycles

The first example of algebras A for which the connection between the positivity of (-, -),, and
the periodicity of @, is completely understood is the class of path algebras of quivers without
oriented cycles, or more generally hereditary algebras, see [62, Theorem 18.5]. We briefly
review the main results.

A (finite) quiver @ is a directed graph with a finite number of vertices and edges. The
underlying graph of (@) is the undirected graph obtained from () by forgetting the orientations
of the edges. An oriented cycle is a nontrivial path in () starting and ending at the same vertex.
The path algebra kQ is the algebra over k having as a k-basis the set of all (oriented) paths in
Q; the product of two paths is their composition, if defined, and zero otherwise.

When @) has no oriented cycles, the path algebra k() is hereditary and finite-dimensional.
Denote by (-, ) its Euler form and by @, its Coxeter transformation. The matrix of (-, ) o With
respect to the basis of simple modules is unitriangular, and its symmetrization is generalized
Cartan. The relations between the periodicity of ®¢ and the positivity of (-, ->Q are summarized
in the following well-known proposition, see [1, 9, 14, 77] and [76, (1.2)].

Proposition 7.3.1. Let () be a connected quiver without oriented cycles. Then:
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a. ®g is periodic if and only if (-, '>Q is positive, equivalently the underlying graph of Q) is
a Dynkin diagram of type A, D or E.

b. ®q is weakly periodic if and only if (-, ) @ Is non-negative, equivalently the underlying
graph of Q is a Dynkin diagram or an extended Dynkin diagram of type A DorE.

7.3.2 Canonical algebras

Another interesting class of algebras for which the connection between non-negativity and peri-
odicity is established are the canonical algebras, introduced in [76].

The Grothendieck group and the Euler form of canonical algebras were thoroughly studied
in [61]. If A is canonical of type (p,A) where p = (p1,...,p:) and A = (Az,..., \¢) is a
sequence of pairwise distinct elements of &\ {0}, then the rank of Ko(A)is S°i_, p;—(t—2) and
the characteristic polynomial of the Coxeter transformation ® » equals (T'—1)2T[/_, 252 [61,
Prop. 7.8)]. In particular, p(®,) = 1 and the eigenvalues of ®, are roots of unity, hence ®, is
weakly periodic.

The following proposition follows from [61, Prop. 10.3], see also [63].

Proposition 7.3.2. Let A be a canonical algebra of type (p, A). If @ is periodic then p is one
of (2,3,6), (2,4,4), (3,3,3) or (2,2,2,2). In any of these cases, (-, ), is non-negative.

7.3.3 [Extending to piecewise hereditary algebras

We extend the results of the previous sections to the class of all piecewise hereditary algebras.

Definition 7.3.3. An algebra A over k is piecewise hereditary if there exist a hereditary abelian
category H and a triangulated equivalence D°(A) ~ D(H).

Theorem 7.3.4. Let k be an algebraically closed field and let A be a finite dimensional piecewise
hereditary k-algebra. If ® is periodic, then (-, -) \ is non-negative.

Proof. By definition, there exists a hereditary category H and an equivalence of triangulated
categories I : D°(A) ~ D(H). By the invariance under derived equivalence, it is enough to
prove the theorem for @4 and (-, -),,. Moreover, we can assume that 7 is connected.

Now H is an Ext-finite k-category and F(A,) is a tilting complex in D°(H), so by [39,
Theorem 1.7], H admits a tilting object, that is, an object T with Ext%{(T ,T') = 0 such that for
any object X of H, the condition Homy (7, X) = 0 = Ext},(T, X) implies that X = 0.

By the classification of hereditary connected Ext-finite k-categories with tilting object up to
derived equivalence over an algebraically closed field [38], H is derived equivalent to mod H
for a finite dimensional hereditary algebra H or to mod A for a canonical algebra A. Again by
invariance under derived equivalence we may assume that H = mod H or H = mod A.

For H = mod H, we can replace H by a path algebra of a finite connected quiver with-
out oriented cycles, and then use Proposition 7.3.1. For H = mod A, the result follows from
Proposition 7.3.2. U
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7.3.4 Incidence algebras of posets

Let X be a finite partially ordered set (poset) and let k be a field. We recollect the basic facts on
incidence algebras of posets and their Euler forms, and refer the reader to Chapter 1, especially
Sections 1.2.5 and 1.3.3, for more details.

The incidence algebra kX is the k-algebra spanned by elements e, for the pairs x < y
in X, with multiplication defined by e,y €., = 0y-€4y. Finite dimensional right modules over
kX can be identified with commutative diagrams of finite dimensional k-vector spaces over the
Hasse diagram of X which is the directed graph whose vertices are the points of X, with an
arrow from x to y if * < y and thereisno z € X withz < z < y.

The algebra kX is of finite global dimension, hence its Euler form, denoted (-, -) . 1s well-
defined and non-degenerate. Denote by C'x, ® x the matrices of (-, -) y and its Coxeter transfor-
mation with respect to the basis of simple £X-modules.

The incidence matrix of X, denoted 1y, is the X x X matrix defined by

1 z<y
1 = -
( X)my {0 otherwise

By extending the partial order on X to a linear order, we can always arrange the elements of X
such that the incidence matrix is unitriangular. In particular, 1 is invertible over Z. Recall that

the Mébius function px : X x X — Zis defined by pux(x,y) = (1X1)wy~

Lemma 7.3.5. Cx = 1)_(1.

Proof. Use Proposition 1.3.11. O
Lemma 7.3.6. Let x,y € X. Then (Px)zy = — Zz:sz wx (y, z).

Proof. Since ®x = —Cx'Ch = —1x1/,

(®X)ay == > (Ax)ae(Ix )y = = D px(v,2)

zeX z:1z21

O]

When the Hasse diagram of X has the property that any two vertices x, y are connected by
at most one directed path, the Mobius function takes a very simple form, namely

1 y==x
px(z,y) =1 —1 x — yis an edge in the Hasse diagram
0 otherwise

In this case, Lemma 7.3.6 coincides with Proposition 3.1 of [10], taking the Hasse diagram as
the quiver.

Lemma 7.3.7. If X and Y are posets, then

Cxxy =Cx ®Cy Oxyy = —Px ® Py
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25 —10x4 43423 — 48224272 —4 25 —10x% 43423 — 4622 +242—4

Figure 7.1: Derived equivalent posets with different spectra of the corresponding symmetrized
bilinear forms.

Proof. Observe that 1 x4y = 1x ® 1y. ]

Corollary 7.3.8. Let X, Y be posets with periodic Coxeter matrices. Then X X Y has also
periodic Coxeter matrix.

Since non-negativity of forms is not preserved under tensor products, Corollary 7.3.8 can
be used to construct posets with periodic Coxeter matrix but with indefinite Euler form, see
Example 7.4.4.

7.4 Examples

For a poset X, let C'x, ®x be as in the previous section. In particular we may assume that C'x
is unitriangular. The symmetrization Ax = Cx + CE( satisfies (A1) and (A2), but in general it
is not bipartite nor generalized Cartan.

7.4.1 Spectral properties of ¢ yx

Example 7.4.1. The spectrum of ®x does not determine that of Ax (Compare with Theo-
rem7.2.7a).

The four posets whose Hasse diagrams are depicted in Figure 7.1 are derived equivalent (as
they are all piecewise hereditary of type Ds), hence their Coxeter matrices are similar and have
the same spectrum, namely the roots of the characteristic polynomial 2° + z* 4+ 2 + 1. However,
the spectra of the corresponding symmetrized forms are different. Figure 7.1 also shows for each
poset X the characteristic polynomial of the matrix of its symmetrized form.

Example 7.4.2. A poset X with spec ®x ¢ S* UR (Compare with Theorem 7.2.7b).
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Let X be the following poset.

Avavd
Avavd

The characteristic polynomial of ® y is (x + 1) (z* — 223 4 622 — 2x —|— 1), whose roots, besides

—1,are 2,2, 27+, 771 with Rz = 1EV2Y323 a4nd |22 = Lt V — 1. These four roots are

neither real nor on the unit circle.

An example of similar spectral behavior for path algebra of a quiver is given in [62, Exam-
ple 18.1].

Note that for all posets X with 7 elements or less, spec(®x) C S' UR. This was verified
using the database [30] and the MAGMA software package [13].

7.4.2 Counterexamples to [24, Prop. 1.2]

We give two examples of posets showing that in general, for triangular algebras, the periodicity
of the Coxeter transformation (and even of the Auslander-Reiten translation up to a shift) does
not imply the non-negativity of the Euler form.

Example 7.4.3. Consider the poset X with the following Hasse diagram.

PR

Then <I>§( = Ibutv'Cxv = —1forv = (1 1 111 00 O)t (the vertices are ordered
in layers from top to bottom).

Example 7.4.4. Let X = A3 x D, with the following orientations:

1 2 1 2

L/ L/
3 3
ﬁ
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The Hasse diagram of X is given by

1,1 1,2 2,1 2,2

\>,3<3,1><3,2>2,{/
1¢4\\‘3 3‘// 2¢4
\3¢4/

so that X contains the following wild quiver as a subposet.

1,3 3,1 3,2 23

|

3,4

It follows [64] that kX is not of finite representation type, hence by [86, Theorem 6] the form
(-,-) x is not weakly positive, that is, there exists a vector v # 0 with non-negative coordinates
such that (v, v) v < 0.

Moreover, we can exhibit a non-negative vector v such that v!Cxyv = —1, namely v =
(vz)zex where the integers v, are placed at the vertices as in the following picture:

0 0 0 0

> 7

1 1

=
—

On the other hand, the Coxeter matrices of the quivers A3 and Dy are periodic, their orders
are 4 and 6 respectively. By Corollary 7.3.8, the Coxeter matrix of X is periodic of order 12.

Contrary to Example 7.4.3, one can show that not only the image ®x of the Auslander-
Reiten translation 7y : D°(kX) — DP(kX) in the Grothendieck group is periodic, but also that
actually 7% ~ [d] for some integers d, e > 1.

/7

— <
— e
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Chapter 8

Which Canonical Algebras are Derived
Equivalent to Incidence Algebras of
Posets?

This chapter concerns the characterization of the canonical algebras over an algebraically closed
field that are derived equivalent to incidence algebras of finite partially ordered sets (posets),
expressed in the following theorem.

Theorem. Let A be a canonical algebra of type (p, X) over an algebraically closed field. Then
A is derived equivalent to an incidence algebra of a poset if and only if the number of weights
of p is either 2 or 3.

This theorem can be interpreted both geometrically and algebraically. From a geometric
viewpoint, by considering modules over incidence algebras as sheaves over finite spaces (Sec-
tion 1.2.5) and using the derived equivalence between the categories of modules over a canonical
algebra and coherent sheaves over a weighted projective line [32], we are able to obtain explicit
derived equivalences between the categories of sheaves of finite dimensional vector spaces over
certain finite Tj topological spaces and the categories of coherent sheaves over certain weighted
projective lines.

From an algebraic viewpoint, in an attempt to classify all piecewise hereditary incidence
algebras over an algebraically closed field, one first asks which types of piecewise hereditary
categories can actually occur. Happel’s classification [38] tells us that we only need to consider
the canonical algebras and path algebras of quivers. For the canonical algebras the theorem
above gives a complete answer, while for path algebras, see the remarks in Section 8.2.2.

We finally note that for the constructions of incidence algebras derived equivalent to canon-
ical algebras, the assumption that the base field is algebraically closed can be omitted.

8.0 Notations

The canonical algebras were introduced in [76]. Let k be a field, p = (p1, - . ., pt) be a sequence
of t > 2 positive integers (weights), and A = (s, ..., \;) be a sequence of pairwise distinct
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elements of k\ {0}. The canonical algebra of type (p, A), is the algebra A(p, A) = kQ/I where
Q is the quiver

.171 .1’2 e .1,p171
4 2
o x9 xo xr2
L2 1 92 . 2 pr—1 —> O,
Tt Tt
x x
.t,l t .t,2 t [N .t,pt_l

and [ is the ideal in the path algebra k() generated by the following linear combinations of paths
from 0 to w:

I = (2P —af? + X' £ 3<i<t)

As noted in [76], as long as ¢ > 3, one can omit weights equal to 1, and when t = 2, the
ideal I vanishes and the canonical algebra is equal to the path algebra of (). In the latter case,
one usually writes only the weights greater than 1, in particular the algebra of type () equals the
path algebra of the Kronecker quiver. Hence when speaking on the number of weights, we shall
always mean the number of p; with p; > 2.

Let X be a finite partially ordered set (poset). The incidence algebra kX is the k-algebra
spanned by the elements e, for the pairs x < y in X, with the multiplication defined by setting
Cxyly > = €q. if y =y and ezye,r. = 0 otherwise.

A k-diagram F over X consists of finite dimensional vector spaces F(x) for x € X, to-
gether with linear transformations r,,/ : F(x) — F(x') for all x < 2/, satisfying the conditions
Tow = Lyp(z) and rypn = 1prgntee forall z < 2’ < 2”. The category of finite dimensional right
modules over kX is equivalent to the category of k-diagrams over X, see Section 1.2.5.

For a finite-dimensional algebra A over k, we denote by C?(A) the category of bounded
complexes of (right) finite-dimensional A-modules, and by D°(A) the bounded derived category.
The algebra A is piecewise hereditary if DP(A) is equivalent as triangulated category to D°(H)
for a hereditary k-category H.

8.1 The necessity of the condition ¢ < 3 in the Theorem

For a k-algebra A, denote by HH’(A) the i-th Hochschild cohomology of A, which equals
Ext}y o nop (A, A), where A is considered as a A-A-bimodule in the natural way.

Proposition 8.1.1. Let X be a poset such that kX is piecewise hereditary. Then HH (kX)) = 0
forany i > 1.

Proof. First, since for any two finite-dimensional k-algebras A1, A2 we have HH (A1 @ Ag) =
HH'(A;) @ HH*(A2), we may assume that X is connected, as the decomposition of X into
connected components X = LII_; X; induces a decomposition of the incidence algebra £X =

Di=1 kXi.
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Let kx be the constant diagram on X, defined by kx (z) = k for all x € X with all maps
being the identity on k. By Corollary 1.3.20, HH!(kX) = Ext% (kx, kx).

Since X is connected, kx is indecomposable, and by [35, IV (1.9)], the groups
Ext’ (kx, kx) vanish for i > 1, hence HH(kX) = 0 for i > 1. O

Corollary 8.1.2. Let k be algebraically closed and let A be a canonical algebra over k of type
(P, A) where p = (p1,...,p¢). If D°(A) ~ Db(kX) for some poset X, thent < 3.

Proof. Assume that ¢ > 4. Then A is not of domestic type and by [37, Theorem 2.4],
dimy HH?(kX) = t — 3, a contradiction to Proposition 8.1.1. Therefore ¢ < 3. O

8.2 Constructions of posets from canonical algebras

8.2.1 Thecaset =3

Recall that when ¢ = 3, the canonical algebra A(p, A) is independent of the parameter A3, so
we may assume that A3 = 1, and denote the algebra by A(p). Let p = (p1, p2, p3) be a triplet
of weights with 2 < p; < py < p3. Attach to p a poset X, whose Hasse diagram is shown in
Figure 8.1. Explicitly, use the Hasse diagram of (8.2.1) if p; > 2, (8.2.2) if p; = 2 and py > 2,
(8.2.3)if po = 2 and p3 > 2 and (8.2.4) if p3 = 2.

Theorem 8.2.1. Let k be a field and let p = (p1, p2, p3). Then A(p) is derived equivalent to the
incidence algebra of Xp.

Proof. The idea of the proof relies on the notion of a formula introduced in Chapter 3, and
we refer to that chapter for more details. We shall first construct a functor F' : C®(kXp) —
C’(A(p)) that induces a triangulated functor F' : D?(kX. p) — DP(A(p)), and then prove that F
is an equivalence.

Note that similarly to the identification in Lemma 3.2.3 of complexes of diagrams with
diagrams of complexes, we may identify complexes of modules over the canonical algebra with
a (non-commutative) diagram of complexes of vector spaces satisfying the canonical algebra
relations.

For a morphism f : K — L of complexes K = (K*,d%), L = (L', d% ) of vector spaces,

denote by C(K EN L) the cone of f, cf. Section 3.2.2. Recall that C(K — L)' = K1 @ L7,
with the differential acting as the matrix

—dift 0
Fdi
by viewing the terms as column vectors of length two. Denote by [1] the shift operator, that is,
K1) = K™ with dj ) = —dif
We will demonstrate the construction of F' for the posets of type (8.2.1), the other cases

being similar. Let Ko, K, and K; j for1 <7 < 3,1 < j < p; be complexes in a commutative
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p1=2<p2<p3

(8.2.1)

(8.2.2)

(8.2.3)

(8.2.4)

Hasse diagrams of posets derived equivalent to canonical algebras of type



diagram
Kii— - —K ALK
1,1 T 1,p1—-2 1pi—1

i - X

Y2
Ko —>Ka1—>- —> Kopy2. 5 Kop, -1 = Ky,

\ 13 /
232 Y3

K3g—= - —=K3p;2 > K3p;1

Let Lo = Kpand L; j = K; jfor1 <i<3and1 < j < p; — 1. Define

Y1 Yo
Lip—1=C(K1p,—1D K3ps—1 ww), K,)[-1]

Y3 y:
L3 ps—1 = C(K3p;—1© Kopy—1 ), K,)[-1]

(
Lo py—1 = C(Kzp,—1 ® K1,p,-1 ), K,)[-1]
(
(y1 Y2 y3)
( AN

Ly, =C(Kip—10 Kap,—1D K3 p—1 K,)[-1]

with the three maps

(211 —213 0)7
Lipy—2 —————— Lip 1
(=222 221 0)7

Lo p,—2 Lo p,—1

(z33 —x32 0)T
L3 py—2 ———— L3 p;—1

and the three maps from L; ;, 1 to L, being the canonical embeddings.
Then the following is a (non-commutative) diagram of complexes

Lig—=-—=Lip—2—>Lip 1

Ly Loy e Lo p,—2 —= Lop,—1 —= L,

L3y —=-+—>L3p;2—>L3p;1
that satisfies the canonical algebra relation, and we get the required functor £’ which induces, by
the general considerations in Section 3.3, the functor F.
To prove that F' is an equivalence, we use Beilinson’s Lemma [6, Lemma 1] and verify that
for any two simple objects S, S, (where x,y € X) and ¢ € Z, the functor F' satisfies
Home(kXp) (Sz, Sy [Z]) =~ HOme(A(p)) (FSI, FSy [’L])

and moreover the images F'S, generate Db(A(p)) as a triangulated category.
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We omit the details of this verification. However, we just mention that FSyand F S ;, for
1 <i<3and1 < j < p; — 1, are the corresponding simple A(p)-modules, while 'Sy 5, —1,
FS5p,-1, FS3 5,1 and F'S,, are given by

0> >0~k 0>+ —>0-—>0
/! N /! N
00—+ —=0-—=k—=k 00— —>=0—>k—=Fk
N /! N /1
00— —>0->=0 0= —>0—>k
FSipi-1 ES2.p,-1

0——=0—>Fk 0= —=0—>k

ﬁ53»p371 FSUJ

Example 8.2.2 ([62, Example 18.6.2]). Let As be the quiver 1 —— @2 and let X = Ay X
Ag X As. Then the incidence algebra of X is derived equivalent to the canonical algebra of type
(3,3,3).

Remark 8.2.3. Observe that w is the unique maximal element in the posets whose Hasse dia-
grams are given in (8.2.3) and (8.2.4). Hence by taking Y = {w} in Corollary 1.4.15, we recover
the fact that the canonical algebra of type (2, 2, p) is derived equivalent to the path algebra of the
extended Dynkin quiver 15p+2.

Remark 8.2.4. Similar applications of Theorem 3.1.1 and its corollaries for the posets in (8.2.2)
show that the canonical algebra of type (2, p2, p3) is derived equivalent to the incidence algebras
of the posets whose Hasse diagrams are given in Figure 8.2, where edges without arrows can be
oriented arbitrarily.

8.2.2 Remarks on path algebras

Let @ be a finite quiver without oriented cycles. The set of its vertices )y has a natural partial
order defined by x < y for two vertices x,y € (o if there exists an oriented path from x to y.
When () has the property that any two vertices are connected by at most one oriented path, the
path algebra k() is isomorphic to the incidence algebra of the poset (Qp, <). A partial converse
is given by the following lemma.

Lemma 8.2.5 ([68, Theorem 4.2]). Let X be a poset. Then gl.dim kX < 1 if and only if any
two points in the Hasse diagram of X are connected by at most one path.
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Figure 8.2: More posets whose incidence algebras are derived equivalent to the canonical algebra
of type (2, p2, p3).

0O<—0<—— 0

For two quivers @ and @', we denote Q@ ~ Q' if @' can be obtained from @ by applying
a sequence of BGP reflections (at sources or sinks), see [35, (I.5.7)]. Since BGP reflections
preserve the derived equivalence class, we conclude that if @ is a quiver such that Q@ ~ @’ for a
quiver Q" having the property that any two vertices are connected by at most one oriented path,
then the path algebra k(@) is derived equivalent to an incidence algebra of a poset.

8.2.3 Thecaset =2

When the number of weights is at most 2, the corresponding canonical algebra is a path algebra
of a quiver, however there are two distinct paths from the source O to the sink w.

When the weight type is (p1,p2) (With p1,pa > 2), we can overcome this problem by
applying a BGP reflection at the sink w. The resulting quiver is shown below,

LI L) e ®p—1 2 <p1,p2
o) 0271 .2,2 e .2,p271 <~— 0,

and its path algebra is an incidence algebra derived equivalent to the canonical algebra of type
(p1,Pp2)-

In the remaining case, where the weight type is either (p) or (), the corresponding canon-
ical algebra equals the path algebra of the quiver levl,p drawn in Figure 8.3, and we show the
following.
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Figure 8.3: The quiver A _p — not derived equivalent to any incidence algebra.

Proposition 8.2.6. Ler p > 1 and let k be algebraically closed. Then there is no poset whose
incidence algebra is derived equivalent to the path algebra of the quiver Ay ,,.

Proof. Assume that there exists a poset X such that kX is derived equivalent to the path algebra
of AV 1,p-

If gl.dim £X < 1, then by Lemma 8.2.5, the algebra kX equals the path algebra of its Hasse
diagram @, thus by [35, (I1.5.7)], @ is obtained from ELP by a sequence of BGP reflections.
But this is impossible since the only possible reflections are at 0 and p, and they give quivers
isomorphic to Zl,p. However, Zlyp is not the Hasse diagram of any poset.

Hence gl.dim kX > 2. By Lemma 8.2.5, there exists at least one commutativity relation
in the quiver (), so that kX is not a gentle algebra. This is again impossible since the path
algebra of El,p is gentle and the property of an algebra being gentle is invariant under derived
equivalence [80]. Alternatively, one can use the explicit characterization in [2] of iterated tilted
algebras of type A, O

118



Bibliography

[1] Norbert A’Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math.
33 (1976), no. 1, 61-67.

[2] Ibrahim Assem and Andrzej Skowroniski, Iterated tilted algebras of type A,,, Math. Z. 195
(1987), no. 2, 269-290.

[3] Maurice Auslander, Maria Inés Platzeck, and Idun Reiten, Coxeter functors without dia-
grams, Trans. Amer. Math. Soc. 250 (1979), 1-46.

[4] Maurice Auslander, Idun Reiten, and Sverre O. Smalg, Representation theory of Artin
algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University
Press, Cambridge, 1995.

[5] Michael Barot and Helmut Lenzing, One-point extensions and derived equivalence, J. Al-
gebra 264 (2003), no. 1, 1-5.

[6] A. A. Beilinson, Coherent sheaves on P™ and problems in linear algebra, Funktsional.
Anal. i Prilozhen. 12 (1978), no. 3, 68—69.

[7] A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology
on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982,
pp- 5-171.

[8] S. Berman, Y. S. Lee, and R. V. Moody, The spectrum of a Coxeter transformation, affine
Coxeter transformations, and the defect map, J. Algebra 121 (1989), no. 2, 339-357.

[9] 1. N. Bernstein, I. M. Gel'fand, and V. A. Ponomarev, Coxeter functors, and Gabriel’s
theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19-33.

[10] Axel Boldt, Methods to determine Coxeter polynomials, Linear Algebra Appl. 230 (1995),
151-164.

[11] A.Bondal and D. Orlov, Derived categories of coherent sheaves, Proceedings of the Inter-
national Congress of Mathematicians, Vol. II (Beijing, 2002) (Beijing), Higher Ed. Press,
2002, pp. 47-56.

[12] A.L Bondal, Representation of associative algebras and coherent sheaves., Math. USSR,
Izv. 34 (1990), no. 1, 23-42 (Russian, English).

119



[13] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The
user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, Computational algebra
and number theory (London, 1993).

[14] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4—6, Elements of Mathemat-
ics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by
Andrew Pressley.

[15] Aslak Bakke Buan and Henning Krause, Tilting and cotilting for quivers and type A, T
Pure Appl. Algebra 190 (2004), no. 1-3, 1-21.

[16] Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov,
Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.

[17] P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (A,
case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364 (electronic).

[18] Frédéric Chapoton, On the Coxeter transformations for Tamari posets, Canad. Math. Bull.
50 (2007), no. 2, 182-190.

[19] Stephen U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J. 18
(1961), 13-25.

[20] Claude Cibils, Cohomology of incidence algebras and simplicial complexes, J. Pure Appl.
Algebra 56 (1989), no. 3, 221-232.

[21] E. Cline, B. Parshall, and L. Scott, Algebraic stratification in representation categories, J.
Algebra 117 (1988), no. 2, 504-521.

[22] , Finite-dimensional algebras and highest weight categories, J. Reine Angew.

Math. 391 (1988), 85-99.

[23] A. J. Coleman, Killing and the Coxeter transformation of Kac-Moody algebras, Invent.
Math. 95 (1989), no. 3, 447-477.

[24] José A. de la Peiia, Periodic Coxeter matrices, Linear Algebra Appl. 365 (2003), 135-142,
Special issue on linear algebra methods in representation theory.

[25] P. Deligne, M. Goresky, and R. MacPherson, L’algébre de cohomologie du complément,
dans un espace affine, d’une famille finie de sous-espaces affines, Michigan Math. J. 48
(2000), 121-136.

[26] Daniel Dugger and Brooke Shipley, K-theory and derived equivalences, Duke Math. J.
124 (2004), no. 3, 587-617.

[27] K.L.Fields, On the global dimension of residue rings, Pacific J. Math. 32 (1970), 345-349.

[28] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. 1. Foundations, J. Amer. Math.
Soc. 15 (2002), no. 2, 497-529 (electronic).

120



[29] Robert M. Fossum, Phillip A. Griffith, and Idun Reiten, Trivial extensions of abelian cate-
gories, Springer-Verlag, Berlin, 1975, Homological algebra of trivial extensions of abelian
categories with applications to ring theory, Lecture Notes in Mathematics, Vol. 456.

[30] A. Cheryl Gann and A. Robert Proctor, Chapel Hill Poset Atlas,
http://www.unc.edu/ rap/Posets.

[31] Maria Andrea Gatica and Maria Julia Redondo, Hochschild cohomology and fundamental
groups of incidence algebras, Comm. Algebra 29 (2001), no. 5, 2269-2283.

[32] Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in rep-
resentation theory of finite-dimensional algebras, Singularities, representation of algebras,
and vector bundles (Lambrecht, 1985), Lecture Notes in Math., vol. 1273, Springer, Berlin,
1987, pp. 265-297.

[33] Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, second ed., Springer
Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[34] Murray Gerstenhaber and Samuel D. Schack, Simplicial cohomology is Hochschild coho-
mology, J. Pure Appl. Algebra 30 (1983), no. 2, 143-156.

[35] Dieter Happel, Triangulated categories in the representation theory of finite-dimensional
algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge Univer-
sity Press, Cambridge, 1988.

[36] |, Hochschild cohomology of finite-dimensional algebras, Séminaire d’ Algebre Paul
Dubreil et Marie-Paul Malliavin, 39¢me Année (Paris, 1987/1988), Lecture Notes in Math.,
vol. 1404, Springer, Berlin, 1989, pp. 108-126.

[37] , Hochschild cohomology of piecewise hereditary algebras, Colloq. Math. 78
(1998), no. 2, 261-266.
[38] , A characterization of hereditary categories with tilting object, Invent. Math. 144

(2001), no. 2, 381-398.

[39] Dieter Happel and Idun Reiten, Directing objects in hereditary categories, Trends in the
representation theory of finite-dimensional algebras (Seattle, WA, 1997), Contemp. Math.,
vol. 229, Amer. Math. Soc., Providence, RI, 1998, pp. 169-179.

[40] Dieter Happel, Idun Reiten, and Sverre Smal@, Piecewise hereditary algebras, Arch. Math.
(Basel) 66 (1996), no. 3, 182-186.

[41] Dieter Happel, Idun Reiten, and Sverre O. Smalg, Tilting in abelian categories and qua-
sitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88.

[42] Dieter Happel, Jeremy Rickard, and Aidan Schofield, Piecewise hereditary algebras, Bull.
London Math. Soc. 20 (1988), no. 1, 23-28.

121



[43] Dieter Happel and Luise Unger, Almost complete tilting modules, Proc. Amer. Math. Soc.
107 (1989), no. 3, 603-610.

[44] , On a partial order of tilting modules, Algebr. Represent. Theory 8 (2005), no. 2,

147-156.

[45] Robert B. Howlett, Coxeter groups and M -matrices, Bull. London Math. Soc. 14 (1982),
no. 2, 137-141.

[46] David Hughes and Josef Waschbiisch, Trivial extensions of tilted algebras, Proc. London
Math. Soc. (3) 46 (1983), no. 2, 347-364.

[47] Kiyoshi Igusa and Dan Zacharia, On the cohomology of incidence algebras of partially
ordered sets, Comm. Algebra 18 (1990), no. 3, 873—-887.

[48] Colin Ingalls and Hugh Thomas, Noncrossing partitions and representations of quivers,
arXiv:math/0612219v2.

[49] Kalle Karu, Hard Lefschetz theorem for nonrational polytopes, Invent. Math. 157 (2004),
no. 2, 419-447.

[50] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathema-
tischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1990.

[51] Bernhard Keller, On the construction of triangle equivalences, Derived equivalences for
group rings, Lecture Notes in Math., vol. 1685, Springer, Berlin, 1998, pp. 155-176.

[52] , On triangulated orbit categories, Doc. Math. 10 (2005), 551-581 (electronic).

[53] , Derived categories and tilting, Handbook of tilting theory (Lidia Angeleri Hiigel,
Dieter Happel, and Henning Krause, eds.), London Mathematical Society Lecture Note

Series, vol. 332, Cambridge University Press, Cambridge, 2007, pp. 49-104.

[54] Otto Kerner, Andrzej Skowroniski, Kunio Yamagata, and Dan Zacharia, Finiteness of the
strong global dimension of radical square zero algebras, Cent. Eur. J. Math. 2 (2004),
no. 1, 103-111 (electronic).

[55] Steffen Konig, Tilting complexes, perpendicular categories and recollements of derived
module categories of rings, J. Pure Appl. Algebra 73 (1991), no. 3, 211-232.

[56] Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the Inter-
national Congress of Mathematicians, Vol. 1, 2 (Ziirich, 1994) (Basel), Birkhduser, 1995,
pp- 120-139.

[57] Sefi Ladkani, Bounds on the global dimension of certain piecewise hereditary categories,
J. Pure Appl. Algebra, preprint available at arXiv:math/0607139.

[58] , Which canonical algebras are derived equivalent to incidence algebras of

posets?, Comm. Algebra, preprint available at arXiv:0708.1412.

122



[59]

, On derived equivalences of categories of sheaves over finite posets, J. Pure Appl.
Algebra 212 (2008), no. 2, 435-451.

[60]

, On the periodicity of coxeter transformations and the non-negativity of their euler
forms, Linear Algebra Appl. 428 (2008), no. 4, 742-753.

[61] Helmut Lenzing, A K-theoretic study of canonical algebras, Representation theory of al-
gebras (Cocoyoc, 1994), CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI,
1996, pp. 433-454.

[62] _, Coxeter transformations associated with finite-dimensional algebras, Computa-
tional methods for representations of groups and algebras (Essen, 1997), Progr. Math., vol.
173, Birkhiuser, Basel, 1999, pp. 287-308.

[63] Helmut Lenzing and José Antonio de la Pefia, Wild canonical algebras, Math. Z. 224
(1997), no. 3, 403-425.

[64] Michele Loupias, Indecomposable representations of finite ordered sets, Representations
of algebras (Proc. Internat. Conf., Carleton Univ., Ottawa, Ont., 1974), Springer, Berlin,
1975, pp. 201-209. Lecture Notes in Math., Vol. 488.

[65] Saunders Mac Lane, Categories for the working mathematician, second ed., Graduate
Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.

[66] Michael C. McCord, Singular homology groups and homotopy groups of finite topological
spaces, Duke Math. J. 33 (1966), 465-474.

[67] Sandra Michelena and Maria Inés Platzeck, Hochschild cohomology of triangular matrix
algebras, J. Algebra 233 (2000), no. 2, 502-525.

[68] Barry Mitchell, On the dimension of objects and categories. Il. Finite ordered sets., J.
Algebra 9 (1968), 341-368.

[69] Jun-Ichi Miyachi, Recollement and tilting complexes, J. Pure Appl. Algebra 183 (2003),
no. 1-3, 245-273.

[70] Ingegerd Palmér and Jan-Erik Roos, Explicit formulae for the global homological dimen-
sions of trivial extensions of rings, J. Algebra 27 (1973), 380—413.

[71] Daniel Quillen, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories
(Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 85—
147. Lecture Notes in Math., Vol. 341.

[72] Nathan Reading, Cambrian lattices, Adv. Math. 205 (2006), no. 2, 313-353.

[73] Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989),
no. 3, 436-456.

123



[74] |, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991),
no. 1, 37-48.

[75] Christine Riedtmann and Aidan Schofield, On a simplicial complex associated with tilting
modules, Comment. Math. Helv. 66 (1991), no. 1, 70-78.

[76] Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math-
ematics, vol. 1099, Springer-Verlag, Berlin, 1984.

[77] , The spectral radius of the Coxeter transformations for a generalized Cartan ma-

trix, Math. Ann. 300 (1994), no. 2, 331-339.

[78] Raphaél Rouquier, Derived equivalences and finite dimensional algebras, International
Congress of Mathematicians. Vol. II, Eur. Math. Soc., Ziirich, 2006, pp. 191-221.

[79] Masahisa Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear
Algebra Appl. 406 (2005), 99-108.

[80] Jan Schréer and Alexander Zimmermann, Stable endomorphism algebras of modules over
special biserial algebras, Math. Z. 244 (2003), no. 3, 515-530.

[81] W.T. Spears, Global dimension in categories of diagrams, J. Algebra 22 (1972), 219-222.
[82] R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325-340.

[83] Hiroyuki Tachikawa and Takayoshi Wakamatsu, Applications of reflection functors for self-
injective algebras, Representation theory, I (Ottawa, Ont., 1984), Lecture Notes in Math.,
vol. 1177, Springer, Berlin, 1986, pp. 308-327.

[84] Luise Unger, Combinatorial aspects of the set of tilting modules, Handbook of tilting the-
ory (Lidia Angeleri Hiigel, Dieter Happel, and Henning Krause, eds.), London Mathemat-
ical Society Lecture Note Series, vol. 332, Cambridge University Press, Cambridge, 2007,
pp. 259-278.

[85] Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996),
no. 239, xii+253 pp. (1997), With a preface by Luc Illusie, Edited and with a note by
Georges Maltsiniotis.

[86] Sergey Yuzvinsky, Linear representations of posets, their cohomology and a bilinear form,
European J. Combin. 2 (1981), no. 4, 385-397.

[87] Bin Zhu, BGP-reflection functors and cluster combinatorics, J. Pure Appl. Algebra 209
(2007), no. 2, 497-506.

124



