ALGEBRAS OF QUASI-QUATERNION TYPE

SEFI LADKANI

ABSTRACT. We define algebras of quasi-quaternion type, which are symmetric algebras
of tame representation type whose stable module category has certain structure similar
to that of the algebras of quaternion type introduced by Erdmann. We observe that
symmetric tame algebras that are also 2-CY-tilted are of quasi-quaternion type.

We present a combinatorial construction of such algebras by introducing the notion
of triangulation quivers. The class of algebras that we get contains Erdmann’s algebras
of quaternion type on the one hand and the Jacobian algebras of the quivers with
potentials associated by Labardini to triangulations of closed surfaces with punctures
on the other hand, hence it serves as a bridge between modular representation theory
of finite groups and cluster algebras.

1. INTRODUCTION

The purpose of this note is to report on some connections between representation
theory of groups and cluster algebras, more precisely, between algebras of quaternion
type introduced and studied by Erdmann [7] and others and 2-CY-tilted algebras which
are endomorphism algebras of cluster-tilting objects in 2-Calabi-Yau categories arising
in the additive categorification of cluster algebras.

Recall that an algebra of quaternion type is a tame, symmetric, indecomposable alge-
bra whose non-projective modules are (2-periodic with period dividing 4 and its Cartan
matrix is non-singular. The possible quivers with relations of such algebras were classified
by Erdmann [7], and later works of Holm [13] and Erdmann-Skowronski [8] established
that the algebras given in those lists are actually of quaternion type.

It seems natural to remove the condition that the Cartan matrix is non-singular and
to consider tame, symmetric, indecomposable algebras whose non-projective modules
are (2-periodic of period dividing 4. In terms of the stable module category, the last
condition means that the 4-th power of the suspension (shift) functor acts as the identity
on objects. Such algebras will be called algebras of quasi-quaternion type.

We construct a large class of algebras of quasi-quaternion type that are also 2-CY-
tilted. It turns out that this class contains in particular:

e All the algebras appearing in Erdmann’s lists of algebras of quaternion type [7];
e All the Jacobian algebras of the quivers with potentials associated by Labardini
to triangulations of closed surfaces with punctures [18].

Our construction has several consequences, both for the representation theory of finite-
dimensional algebras as well as for theory of quivers with potentials. Namely, we obtain:

1. A new proof that the algebras in Erdmann’s lists are of quaternion type;
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2. New tame symmetric algebras with periodic modules which seem not to appear
in the classification announced by Erdmann and Skowronski [9];

3. New symmetric 2-CY-tilted algebras in addition to the ones arising from odd-
dimensional isolated hypersurface singularities [4];

4. Infinitely many non-degenerate potentials with pairwise non-isomorphic Jacobian
algebras on the adjacency quiver [10] of any triangulation of a closed surface with
exactly one puncture (and arbitrary genus).

We observe that the property of being of quasi-quaternion type is preserved under
derived equivalences (see below), hence our strategy is to construct some of these algebras
from combinatorial data and then produce more algebras using derived equivalences. To
this end we introduce triangulation quivers. These are quivers having the property that
at any vertex there are exactly two incoming arrows and two outgoing arrows, together
with the data of a permutation f on the set of arrows such that f(«) starts where
an arrow « ends, subject to the condition that f3 is the identity (this last condition
justifies the term “triangulation”). These data give rise to another permutation g and
an involution o — & on the set of arrows, see Section 2.1.

A triangulation quiver can be dually encoded as a ribbon graph whose nodes are the
cycles of the permutation g, its edges are the vertices of the quiver and the cyclic ordering
of the edges around each node is induced by g. Thus functions on the nodes can be viewed
as functions on the arrows that are constant on g-cycles. Given multiplicities and scalars
associated to the nodes, one can construct from such data a Brauer graph algebra. We
construct another algebra which we call triangulation algebra and prefer to work in a
complete setting; each arrow of the quiver gives rise to a certain commutativity relation
and the algebra is defined as the quotient of the complete path algebra by the closure of
the ideal generated by these commutativity relations. A-priori it is not clear that the
triangulation algebra is finite-dimensional, but it turns out that for most triangulation
quivers and multiplicities, the triangulation algebra satisfies certain additional zero-
relations of length 3 which allow to prove that it is finite-dimensional.

Our main results concerning triangulation algebras are summarized in the next theo-
rem. For the precise definitions of the terms occurring in the formulation, we refer the
reader to Section 2.2.

Theorem 1.1. Let (Q, f) be a connected triangulation quiver, let K be a field, let
m: Q1 — Zsg and c: Q1 — K* be g-invariant functions of multiplicities and scalars,
and assume that m is admissible. Assume further that the associated ribbon graph with
multiplicities is not one of the two exceptional cases shown in Figure 2 and consider the
corresponding triangulation algebra A defined by

A=EKQ/{a f(8) — catd’ ™" Wh)aeq, -
(a) A is finite dimensional; it has a presentation as quiver with relations
A~ KQ/(a- f(a) gf(a), @ f(a) = cawi™ " w))acq, (L.1)

(b) A is symmetric.
(¢) A degenerates to the corresponding Brauer graph algebra T' given by

I'=KQ/{a- f(a), cawn™ — caws™)aecq;
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FI1GURE 1. The triangulation quivers with at most 3 vertices. We list the
marked surface, the ribbon graph(s) corresponding to its triangulation(s)
and the associated triangulation quivers, where we write the permutation
f in cycle form below each quiver. For the torus, all nodes in the ribbon
graph should be identified and edges with the same label are also identi-
fied.
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FIGURE 2. Exceptional ribbon graphs with multiplicities: A monogon
with one puncture (top) and a tetrahedron, which is a triangulation of
a sphere with 4 punctures (bottom). The ribbon graph is shown on the
left, where at each node we indicate its multiplicity. The corresponding
triangulation quiver is shown on the right.

and hence A is of tame representation type.

(d) The elements po = f()f%(a) — caw;?g)_lw;(a) satisfy 3 e, @ pal =0 in KQ,
hence A is a Jacobian algebra of a hyperpotential (see [19] for the definition) and
therefore it is 2-CY-tilted, i.e. there is a 2-Calabi-Yau triangulated category C
and a cluster-tilting object T' in C such that A ~ End¢(T).

(e) A is of quasi-quaternion type.

(f) More generally, for any cluster-tilting object T" in C which is reachable from T
by a sequence of mutations, the algebra Ende(T") is derived equivalent to A and

of quasi-quaternion type.
The exceptional cases are dealt with in the next proposition.

Proposition 1.2. Let (Q, f) be a connected triangulation quiver, let K be a field, let
m: Q1 — Zsqg and c: Q1 — K* be g-invariant functions of multiplicities and scalars.
Assume that the associated ribbon graph with multiplicities is one of the two exceptional
cases shown in Figure 2 and that moreover:

° Hate Co # 1 in the punctured monogon case; or

® CaCaCf(a)Ci(a) 7 1 for some a € Q1 in the tetrahedron case.
Then the statements of Theorem 1.1 hold for the triangulation algebra A with the fol-
lowing modifications of claims (a) and (c):

(') A is finite dimensional; it has a presentation as quiver with relations

A~ KQ/(a- f(a) — cawl™ - W) aco,

and the zero relations - f(a) - gf(a) follow from the commutativity relations.
(¢") A is of tame representation type.

One could also formulate a slightly more general version of Theorem 1.1 and Propo-
sition 1.2 by replacing the multiplicities and the scalars by power series in K{[z]], i.e.
replace the functions m and ¢ with a g-invariant function ¢: @1 — K|[[z]] and consider
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the algebra

A=KQ/{(a- f(@) = ga(wa) 'wf,x)atev (1.2)
so that the case treated here corresponds to the choice of o () = coz™ 1. However, in
most cases the algebra A in (1.2) depends only on the leading term of each power series
da(x), so for simplicity we chose not to formulate the results in full generality. We hope
to report on the general case in a later version.

Any triangulation of a marked surface in the sense of Fomin, Shapiro and Thurston [10]
gives rise to a triangulation quiver (see Section 2.1) and hence, by choosing multiplicities
and scalars, to algebras of quasi-quaternion type. Hence, as opposed to algebras of
quaternion type, there are algebras of quasi-quaternion type with arbitrarily many non-
isomorphic simple modules.

The triangulation quivers with small number of vertices can be enumerated, see Fig-
ure 1 for the quivers with at most three vertices. In particular, some algebras of quater-
nion type with 1, 2 or 3 vertices arise from a monogon, a punctured monogon or a
sphere with three punctures, respectively, see Example 2.11. Some of the triangulation
algebras arising from a punctured monogon or a sphere with 3 punctures arise also from
minimally elliptic curve singularities, see Section 7 of [4].

In general, the triangulation quiver constructed from a triangulation differs from the
adjacency quiver constructed in [10]. However, for a triangulation of a closed surface
satisfying a technical condition called (T3) in our work [20] these two quivers coincide
and the triangulation algebra (where all multiplicities are set to 1) coincides with the
Jacobian algebra of the potential constructed by Labardini [18]. Since any closed sur-
face considered in [18] admits such a triangulation and any other triangulation can be
obtained from it by a sequence of flips, by using the facts that a flip of triangulations
results in a mutation of the corresponding quivers with potentials [18] and that mutation
of quivers with potentials is compatible with mutation of cluster-tilting objects [3] we
get the following result.

Corollary 1.3. Consider a closed surface which is not a sphere with less than 4 punc-
tures. Then the Jacobian algebras arising from its triangulations are of quasi-quaternion
type and they are all derived equivalent to each other. Moreover, they arise as algebras
in part (f) of Theorem 1.1 for a suitable triangulation quiver.

Note that for the proof of this result one does not need to know that the poten-
tials are non-degenerate. Note also that for a sphere with 4 punctures one has to use
Proposition 1.2 and impose the corresponding restriction on the scalars.

The proof of parts (a) and (b) of Theorem 1.1 is similar to our proofs in the case
of the Jacobian algebras of the quivers with potentials arising from triangulations of
closed surfaces [20]. We note that in the presentation (1.1) it is enough to require only
one zero relation « - f(a) - gf(«), as the rest would follow from that relation and the
commutativity relations.

In [13] Holm establishes the tameness of the algebras of quaternion type by showing
that some of them degenerate to algebras of dihedral type and then applying a result of
Geiss [11]. Part (c) can be seen as a generalization of this statement to arbitrary trian-
gulation quivers. We note that connections between Brauer graph algebras and cluster
mutations have also been discovered by Marsh and Schroll [22]. For the two exceptional
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cases considered in Proposition 1.2, the statement (¢’) holds since the corresponding
triangulation algebras are of tubular type [2].

In part (d) we use the notion of a hyperpotential introduced in [19] in order to for-
mulate the results in a characteristic-free form. In particular, we get that 2-blocks with
quaternion defect group are 2-CY-tilted. The triangulation algebra A is a Jacobian al-
gebra of a quiver with potential as defined in [5] when the characteristic of the ground
field K is zero or does not divide any of the multiplicities m,. In that case a potential
can be written as

Safla)- ey = Y mytep)” (13)
o 3

where the sums run over representatives of f-cycles and g-cycles, respectively.

Parts (e) and (f) are consequences of parts (b), (c) and (d). In fact, the statements
therein hold more generally for any tame symmetric 2-CY-tilted algebra A. Part (e)
follows from the next proposition which records some observations on symmetric algebras
that are also 2-CY-tilted.

Proposition 1.4. Let A be a finite-dimensional symmetric algebra that is also 2-CY-
tilted, i.e. A = End¢(T) for some cluster-tilting object T within a triangulated 2-Calabi-
Yau category C with suspension functor 3.

(a) The functor Q* on the stable module category mod A is isomorphic to the identity,
hence all non-projective A-modules are Q2-periodic with period dividing 4.

(b) The functor X% acts as the identity on the objects of C.

(c¢) Assume that A is a Jacobian algebra of a hyperpotential. Then it is rigid if and
only if A is semi-simple.

Here, by rigid we mean that HHo(A) = A/[A, A] is spanned by the images of the
primitive idempotents corresponding to the vertices. This definition is equivalent to the
one in [5] for finite-dimensional Jacobian algebras of quivers with potentials. Parts (a)
and (b) of the proposition have also been recently observed by Valdivieso-Diaz [24].

The derived equivalences in part (f) are instances of (refined version of) good muta-
tions introduced in our previous work [21]. They follow from a more general statement
concerning the derived equivalences of neighboring 2-CY-tilted algebras which is an im-
provement of [21, Theorem 5.3]. Before stating the theorem, we recall some relevant
notions.

Let A be a basic algebra and P an indecomposable projective A-module and write
A = P @ Q. Consider the silting mutations in the sense of Aihara and Iyama [1] of A at
P within the triangulated category per A of perfect complexes, which are the following
two-term complexes

Up(A)=(P—=Q)®Q, UE(A) =(Q" = P)aQ,

where @', Q" € add @, the maps are left/right (add @)-approximations and @, Q’, Q"
are in degree 0. These two-term complexes of projective modules are known also as
Okuyama-Rickard complexes. In [21] we considered these complexes in relation with our
definition of mutations of algebras.
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Theorem 1.5. Let T be a cluster-tilting object in a 2-Calabi-Yau category C, let X be
an indecomposable summand of T and let T' be the cluster-tilting object which is the
Iyama-Yoshino mutation [15] of T at X.

Consider the 2-CY-tilted algebras A = End¢(T') and A’ = Ende(T"). Let P be the
indecomposable projective A-module corresponding to X and let P’ be the indecomposable
projective A -module corresponding to X .

(a) If Up(A) and UF,(A') are tilting complezes, then

Endpera Up(A) ~ A and  Endperar U (A) ~ A
(b) If UL (A) and Up,(A') are tilting complezes, then

Endpera Up (A) ~ A’ and Endper ar Upi (') >~ A.

(¢) If A is weakly symmetric, then by [12] A" is also weakly symmetric, hence all the
complexes Uy (A), U5 (A), Up,/(A') and US,(A') are tilting complexes and

Endpern Up (A) ~ A" ~ Endper o U; (A).

In particular, A and A’ are derived equivalent.
(d) If A is symmetric then A is symmetric.

We note that there are related works by Dugas [6] concerning derived equivalences of
symmetric algebras and by Mizuno [23] concerning derived equivalences of self-injective
quivers with potential.

The category of perfect complexes over a symmetric algebra is 0-Calabi-Yau, hence
the derived equivalences in part (c¢) can be considered as 0-CY analogs of the derived
equivalences of Iyama-Reiten [14] and Keller-Yang [17] for 3-CY-algebras.

Rephrasing part (c), we see that if A is a (weakly) symmetric 2-CY-tilted algebra
and P an indecomposable projective A-module, then the algebras Endpe;p Up (A) and
Endpera U;; (A) are isomorphic to each other, 2-CY-tilted and derived equivalent to A.
A careful look at the derived equivalences constructed by Holm [13] for algebras of
quaternion type shows that all of them arise from tilting complexes of the form appearing
in part (c) above. Since the representatives of the derived classes are triangulation
algebras and hence 2-CY-tilted, we deduce that all the algebras of quaternion type are
of the form given in Theorem 1.1(f) and in particular they are 2-CY-tilted.

Many of the algebras occurring in part (f) of Theorem 1.1 are themselves triangulation
algebras. In fact, one can define a notion of mutation of triangulation quivers that will
lead to mutation of the potentials (1.3), see Section 2.3.

Finally, we note that an argument as in Prop. 2.1 and Prop. 2.2 of [13] yields the
following observation.

Proposition 1.6. Any algebra which is derived equivalent to an algebra of quasi-
quaternion type is also of quasi-quaternion type.
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2. COMBINATORIAL CONSTRUCTION OF ALGEBRAS OF QUASI-QUATERNION TYPE

2.1. Ribbon quivers and triangulation quivers. A quiver is a finite directed graph.
More precisely, it is a quadruple @ = (Qo, Q1, s,t) where Qo and Q) are finite sets (of
vertices and arrows, respectively) and s,t: Q1 — Qo are functions specifying for each
arrow its starting and terminating vertex, respectively.

Definition 2.1. A ribbon quiver is a pair (@, f) consisting of a quiver ) and a permu-
tation f: Q1 — @1 on its set of arrows satisfying the following conditions:

(i) At each vertex i € Qo there are exactly two arrows starting at ¢ and two arrows
ending at i;
(ii) For each arrow a € @1, the arrow f(«) starts where a ends.
Note that loops are allowed in (). A loop at a vertex is counted both as an incoming
and outgoing arrow at that vertex.

Let (@, f) be aribbon quiver. Since at each vertex of ) there are exactly two outgoing
arrows, there is an involution a — & on ()1 mapping each arrow « to the other arrow
starting at the vertex s(«). Composing it with f gives rise to the permutation g: Q1 —
Q1 given by g(a) = f(a) so that for each arrow «, the set {f(«),g(«)} consists of the
two arrows starting at the vertex which « ends at.

Given a quiver @) satisfying condition (i) in the definition, the data of the permutation
f is equivalent to the data of the permutation g. Thus from now on when considering a
ribbon quiver (@, f) we will freely refer to the involution a — @& and the permutation g
as defined above.

Ribbon quivers are closely related to ribbon graphs. Informally speaking, a ribbon
graph is a graph consisting of nodes and edges together with a cyclic ordering of the
edges around each node. This can be made more formal in the next definition.

Definition 2.2. A ribbon graph is a triple (H,t,0) where H is a finite set, ¢ is an
involution on H without fixed points and o is a permutation on H.

The elements of H are called half edges. A ribbon graph gives rise to a graph (V| E)
(possibly with loops and multiple edges between nodes) as follows. The set F of edges
consists of the cycles of + and the set V of nodes consists of the cycles of 0. An edge
e € E can be written as (ht(h)) for some h € H. The o-cycles that h and «(h) belong
to are the nodes that e is incident to. Finally, the cyclic ordering around each node is
induced by o.

Proposition 2.3. The notions of ribbon quiver and ribbon graph are equivalent.

Proof. A ribbon quiver (Q, f) gives rise to a ribbon graph (H,:,0) by taking H = @
and defining (o) = @ and o(a) = f(«) for each a € Q1.
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C@Q
FI1GURE 3. A node with 4 loops corresponds to a boundary component
with 4 marked points.

Conversely, a ribbon graph (H, ¢, o) gives rise to a ribbon quiver (Q, f) as follows. Set
Q1 = H and take Qg to be the set of cycles of ¢. Define the maps s,t: Q1 — Qo and the
permutation f: Q1 — Q1 by letting, for h € H, s(h) to be the t-cycle that h belongs to
and setting t = so and f = (0.

We finally note that these two constructions are inverses of each other. U

We will focus on a subclass of ribbon quivers formed by what we call triangulation
quivers.

Definition 2.4. A triangulation quiver is a ribbon quiver (Q, f) such that f3 is the
identity on the set of arrows.

As their name suggests, triangulation quivers naturally arise from triangulations of
marked surfaces. Following Fomin, Shapiro and Thurston [10], a marked surface is a
pair (S, M) consisting of a compact, connected, oriented, Riemann surface S (possibly
with boundary) and a finite set M of points in S, called marked points, such that each
connected component of the boundary of S contains at least one point from M. The
points in M which are not on the boundary of S are called punctures.

We refer to [10] for the notion of (ideal) triangulation of a marked surface.

Proposition 2.5. A triangulation of a marked surface gives rise to a ribbon graph whose
assoctated ribbon quiver is a triangulation quiver.

Proof. Consider a triangulation 7 of a marked surface (S, M). We associate to 7 a ribbon
graph as follows: the nodes are the punctures in M and the connected components of
the boundary of S, and the edges are the arcs of 7 as well as the boundary segments
(sides of triangles which are part of the boundary).

For each boundary segment on a boundary component C' we draw the corresponding
edge as a loop incident to the node corresponding to C'. In this way each marked point p
on C' could be identified with the “space” between the consecutive loops corresponding
to the two boundary segments which have p as endpoint, see an example in Figure 3.

Using this identification, we can now draw the edges corresponding to arcs, placing
them correctly between the loops (if an endpoint of the arc is on a boundary). The cyclic
ordering at each node is the counterclockwise ordering induced by the orientation of S.

The vertices of the corresponding ribbon quiver are the arcs of 7 as well as the bound-
ary segments. At each vertex corresponding to a boundary segment where is a loop ¢
with f(d) = §, and each triangle in 7 with sides v1, v9, v3 (which may be arcs or boundary

segments) arranged in a clockwise order gives rise to three arrows v; — vy, vy i vs and
v3 & vy with f(a) =3, f(8) =~ and f(7) = o O

The construction of the triangulation quiver of an ideal triangulation resembles that
of the adjacency quiver defined in [10], however there are several differences:
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1. In the triangulation quiver there are vertices corresponding to the boundary
segments and not only to the arcs.

2. Our treatment of self-folded triangles is different; in the triangulation quiver
there is a loop at each vertex corresponding to the inner side of a self-folded
triangle.

3. We do not delete 2-cycles that arise in the quiver (e.g. when there are precisely
two arcs incident to a puncture).

These differences allow to attach triangulation quivers to marked surfaces that do not
admit adjacency quivers, such as a monogon, a triangle or a sphere with three punctures,
see Figure 1. On the other hand, there are situations where the triangulation quiver and
the adjacency quiver of a triangulation coincide.

Lemma 2.6. The triangulation quiver equals the adjacency quiver for any triangulation
of a closed surface (i.e. with empty boundary) with at least three arcs incident to each
puncture.

The condition in the lemma was called (T3) in our work [20]. In particular, we get
the following corollary.

Corollary 2.7. For a closed surface with exactly one puncture, the triangulation quiver
and the adjacency quiver associated to any triangulation coincide.

2.2. Brauer graph algebras and triangulation algebras.

Definition 2.8. Let (@, f) be a ribbon quiver. A function v: o — v, on @ is called
g-tnvariant if Vg(a) = Va for any arrow a.

A g-invariant function can thus be regarded as a function on the nodes of the associated
ribbon graph.

Let (Q, f) be a ribbon quiver. For an arrow o € @1, set
Ne = min{n >0 : ¢"(a) = a}

wa =a-g(a)-...-g"a)

/

wy=a-gla)-...-g
The function o — n, is obviously g-invariant, telling the length of the g-cycle wq
starting at . The path w/, is “almost” cycle; when n, = 1 the arrow « is a loop at
some vertex i and w/, is understood to be the path of length zero starting at i.
Let K be a field. For a quiver (), denote by K@ its path algebra over K and by l/(@
the completed path algebra. The elements of K@ are finite K-linear combinations of
paths in ) whereas those of I/(Z) are possibly infinite such combinations.

Definition 2.9. Let (Q, f) be a ribbon quiver, and let m: Q1 — Z~¢ and ¢: Q1 — K*

be g-invariant functions of multiplicities and scalars, respectively. The graph algebra
associated to these data is defined by

F(Q7 f7m7 C) = KQ/<a ' f(a) ) Cawgla - C@w?a>ate.

In other words, the graph algebra is the Brauer graph algebra [16] associated to
the corresponding ribbon graph. In particular, it is special biserial and hence of tame
representation type.

")
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Definition 2.10. Let (@, f) be a triangulation quiver and let m: @1 — Zso and
c: Q1 — K* be g-invariant functions of multiplicities and scalars, respectively.

We say that m is admissible if mqno > 3 for every arrow a € Q1. In this case we define
the triangulation algebra associated to these data as a quotient of the completed path
algebra of ) by the closure of an ideal generated by suitable commutativity relations:

AQ, f,m,c) = KQ/(a - f(a) — cawa™ ™" wh)acq,

Since the path w™e 1./ is of length man, — 1, the definition of a triangulation

algebra makes sense also when mgn, = 2, but then the corresponding arrow could be
eliminated from () complicating somewhat the remaining relations. The admissibility
condition ensures that the generating relations lie in the square of the ideal generated
by all arrows of ) so no arrows have to be deleted.

Example 2.11. We identify some algebras in the literature as triangulation algebras.
In the first three examples, we use the presentation as quiver with relations given in
Theorem 1.1(a).

1. The triangulation algebras of the triangulation quiver corresponding to a mono-
gon are algebras of quaternion type with one vertex (notation III.1(e) in [7]).

2. The triangulation algebras of the triangulation quiver corresponding to a punc-
tured monogon are algebras of quaternion type with two vertices (denoted Q(28);
in [7]).

3. The triangulation algebras of the triangulation quivers corresponding to trian-
gulations of a sphere with three punctures are algebras of quaternion type with
three vertices (denoted Q(3D) and Q(3K) in [7]).

4. As shown in [20], the Jacobian algebra of the quiver with potential associated by
Labardini-Fragoso [18] to a triangulation of a closed surface satisfying condition
(T3) is the triangulation algebra of its adjacency quiver (which is a triangulation
quiver in view of Lemma 2.6) with all multiplicities set to 1.

The reason for the exclusion of the two exceptional cases from Theorem 1.1 is explained
by the next statement.

Proposition 2.12. Let (Q, f) be a connected triangulation quiver and m: Q1 — Zsg
an admissible g-invariant function of multiplicities. Then the following conditions are
equivalent:
(a) The ribbon graph of (Q, f) with multiplicities is one of the two shown in Fig-
ure 2, i.e. a punctured monogon with multiplicities (3,1) or a tetrahedron with
all multiplicities equal to 1.
(b) mang =3 for all a € Q.
(c) (mana)™t 4 (mp@ynp@) ' + (mfz(a)nfz(a))_l =1 for some o € Q1.
2.3. Mutations of triangulation quivers. Motivated by the relation between flips

of triangulations and Fomin-Zelevinsky mutation of their adjacency quivers [10], we
introduce a notion of mutation for triangulation quivers.

Definition 2.13. Let (Q, f) be a triangulation quiver and let &k be a vertex of ¢ without
loops. Denote by «, & the two arrows that start at £ and observe that our assumption
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FIGURE 4. Mutation of triangulation quivers at the middle vertex o.
Some of the other vertices may coincide, and only the arrows that change
are shown.

on k implies that there are six distinct arrows

ar=a, fi=fla), m=f(a), aw=a fo=fla), rn=r(a)

which form two cycles of the permutation f.
The mutation of (Q, f) at k is the triangulation quiver (Q’, f’) obtained from (Q, f)

by performing the following steps:

(1) Remove the two arrows 31 and [o;

(2) Replace the four arrows aq, as, 71 and o with arrows in the opposite direction

of, ag, 71 and 73;
(3) Add new arrows d12 and d21 with

s(d12) = s(n), t(012) = t(a2), s(d21) = s(72), t(021) = t(a1).
(4) Define the permutation f’ on the new set of arrows Q] by f/(¢) = f(e) if ¢ is an
arrow of () which has not been changed, and by
f'(ai) =13, f'(3) = da1, f'(021) = o]
fl(az) =11, f'(7) = 012, f'(012) = o
for the other arrows.

At the level of the underlying quivers, this is very similar to Fomin-Zelevinsky muta-
tion, but note that Q" may contain 2-cycles.

Lemma 2.14. The triangulation quivers of two triangulations related by a flip at some
arc are related by a mutation at the vertex corresponding to that arc.

Proof. We need to verify that a vertex corresponding to a flippable arc cannot have
loops. Indeed, for a loop « at some vertex k we have that either f(a) = « or g(a) = a.
In the former case k corresponds to a boundary segment, whereas in the latter case it
corresponds to an arc which is the inner side of a self-folded triangle. (]

The permutation f’ on @} defines the permutation ¢’ by ¢'(o/) = f/(«) for o € Q.
Any g-invariant function v gives rise to a ¢’-invariant function v/ on Q) by setting v, = v,
for the arrows in @) that are also in @1 and

I P o o
Var = Vor = Vg, Var = Vyz = Vo V12 = Vs Vo1 = Ve
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for the other arrows. In particular, any two g-invariant functions m: @1 — Z-g and
c: Q1 — K of multiplicities and scalars on (Q, f) give rise to ¢’-invariant functions of
multiplicities m': Q] — Zso and scalars ¢’: Q) — K* on (@', f').

For the rest of this section we fix a triangulation quiver (@, f) and consider its muta-
tion (@', f) at some vertex k without loops.

Proposition 2.15. The ribbon graphs of (Q, f) and (Q', f') are related by an elemen-
tary move in the sense of Kauer [16]. Hence the corresponding Brauer graph algebras
(Q, fym,c) and T(Q', f',m', ) are derived equivalent for any choice of multiplicities
and scalars.

Let p: @1 — xK|[[z]] be a g-invariant function whose values are power series without
constant term. Consider the potential on ) defined by

W= af(0) fe) = 3 pslws) (2.1)
o 3

where the sums run over representatives a of f-cycles and g of g-cycles in Q1. The
function p gives rise to a ¢’-invariant function p’ and hence to the potential on @’

W =3"a - () f2a) ~ 3 ply(wp)
o B

where the sums run over representatives o/ of f’-cycles and S’ of ¢’-cycles in Q.
The next proposition compares (@', W') with the mutation of the quiver with potential
(Q, W) at the vertex k as defined in [5].

Proposition 2.16. Assume that there are no 2-cycles in Q) passing through the vertex k.
Then (Q',W') is right equivalent to the mutation of (Q, W) at k.

In the notation of Definition 2.13, the condition in the proposition is equivalent to the
conditions that ny, > 2, ny, > 2, ng, > 1 and ng, > 1.
Combining Proposition 2.16 with Corollary 2.7, we get:

Corollary 2.17. Let Q be the adjacency quiver of a triangulation of a closed surface
with ezactly one puncture and view it as a triangulation quiver (Q, f). Then for any
power series p(x) € xK|[[z]] the potential

—p(w) +Y_a-fla) (e
«
(where the sum runs over representatives o of f-cycles and w is the cycle wg for some
B € Q1) is non-degenerate. In particular, the set of power series
{0} U {z™ : m is not divisible by the characteristic of K}

yields infinitely many non-degenerate potentials on () whose Jacobian algebras are pair-
wise non-isomorphic.

Triangulation algebras are Jacobian algebras of quivers with potentials under some
conditions on the characteristic of the ground field.
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Lemma 2.18. Let m: Q1 — Z~g and ¢: Q1 — K* be g-invariant functions and assume
that all the multiplicities mqy are invertible over K. Then the triangulation algebra
A(Q, f,m, c) is the Jacobian algebra of (Q, W) where the potential W is of the form (2.1)
for the g-invariant function p: Q1 — xK|[z]] defined by po(x) = comy tax™e.

By using the compatibility between mutations of quivers with potentials and mu-
tations of cluster-tilting objects [3], noting that the vanishing condition needed in [3,
Theorem 5.2] is always satisfied for symmetric (even for self-injective) algebras, Proposi-
tion 2.16 together with Theorem 1.5 imply the following derived equivalence. As we work
with quivers with potentials, we have to impose some restrictions on the characteristic
of the ground field.

Corollary 2.19. Assume that there are no 2-cycles in Q passing through the vertex k.
Letm: Q1 — Zsg and c: Q1 — K> be g-invariant functions of multiplicities and scalars,
respectively. Let m' and ¢ be the corresponding ¢'-invariant functions on Q. Assume
that m is admissible and that moreover each of the numbers my is not divisible by the
characteristic of K. Then the triangulation algebras A(Q, f,m,c) and A(Q', f',m' )
are derived equivalent.

In fact, under the conditions of the corollary we have, in the notations of Theorem 1.5,
Endpera Up, (A) =~ A" ~ Endper o U;k (A)
Endyerr Up, (T) =T = Endyerr Up, (T)
where

A = A(Q? f? m? C)? F = F(Q? f’ m7 C)’ A/ = A(Q’? f’? m,’ Cl)? F/ = F(Q’? f’? m,’ C/)

and P, denotes the indecomposable projective module corresponding to the vertex k
over the appropriate algebra.
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