MUTATION CLASSES OF CERTAIN QUIVERS WITH POTENTIALS
AS DERIVED EQUIVALENCE CLASSES

SEFI LADKANI

ABSTRACT. We characterize the marked bordered unpunctured oriented surfaces with
the property that all the Jacobian algebras of the quivers with potentials arising from
their triangulations are derived equivalent. These are either surfaces of genus g with
b boundary components and one marked point on each component, or the disc with 4
or 5 points on its boundary.

We show that for each such marked surface, all the quivers in the mutation class
have the same number of arrows, and the corresponding Jacobian algebras constitute
a complete derived equivalence class of finite-dimensional algebras whose members are
connected by sequences of Brenner-Butler tilts. In addition, we provide explicit quivers
for each of these classes.

We consider also 10 of the 11 exceptional finite mutation classes of quivers not
arising from triangulations of marked surfaces excluding the one of the quiver X7, and
show that all the finite-dimensional Jacobian algebras in such class (for suitable choice
of potentials) are derived equivalent only for the classes of the quivers Eél’l) and Xg.

1. MOTIVATION AND SUMMARY OF RESULTS

The Bernstein-Gelfand-Ponomarev reflection [10] is an operation on quivers which
carries several interpretations. On a combinatorial level, it takes as inputs an acyclic
quiver () and a vertex s of () which is a source or a sink in () and outputs a new quiver
0sQ. On an algebraic level, it gives rise to a derived equivalence between the path
algebras K@) and KoQ over any field K. Moreover, when K is algebraically closed, by
a result of Happel [21], the path algebras of two acyclic quivers @ and @’ are derived
equivalent if and only if Q' can be obtained from () by performing a finite number of
reflections. It is therefore plausible to extend the scope of this operation beyond path
algebras of quivers as well as remove the restriction on the vertex to be a sink or a source.

Indeed, a generalization of the combinatorial aspect of reflection is given by the quiver
mutation introduced by Fomin and Zelevinsky [19] in their theory of cluster algebras,
allowing to mutate a quiver (without loops and 2-cycles) at any vertex. Furthermore,
Derksen, Weyman and Zelevinsky [16] have developed the theory of quivers with poten-
tials (QP) and their mutations. The data of a quiver ) and a potential W on it give
rise to the Jacobian algebra P(Q, W) which can be seen as a generalization of the path
algebra in the acyclic case.

However, in such generality the algebraic aspect of reflection as a derived equivalence
is usually lost, that is, if ug(Q, W) is the mutation of (@, W) at a vertex k, the Jacobian
algebras P(Q,W) and P(ur(Q,W)) will not be derived equivalent in general. One
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remedy to this situation, provided by Keller and Yang [26], is to replace the Jacobian
algebra by the Ginzburg dg-algebra I'(Q, W) which is negatively graded and 3-Calabi-
Yau, and then the derived categories of I'(Q, W) and I'(1ux(Q, W)) are always equivalent.

Another approach is not to replace the Jacobian algebras, but rather restrict attention
to mutation classes of QPs possessing desired properties regarding derived equivalence.
Following this approach, in this paper we will present mutation classes @ of connected
quivers with potentials having the following two properties:

(01) For any (Q,W) € Q, the Jacobian algebra P(Q, W) is finite-dimensional;
(02) For any (Q,W),(Q",W') € Q, the Jacobian algebras P(Q, W) and P(Q', W)
are derived equivalent.

Note that by [16], it is enough to check condition (1) for just one member of Q.

The condition (d2) is quite restrictive. For example, it is easy to see that while a
mutation class of an acyclic connected quiver @) (necessarily with zero potential) always
satisfies the condition (6;), it will never satisfy the condition (d2) unless @ has at most
two vertices. Indeed, the Jacobian algebras of the QP in the mutation class of @ are
precisely the cluster-tilted algebras of type @ [12, 13]. When @ has at most two vertices,
all mutations are BGP reflections so they are derived equivalences, whereas when () has
three or more vertices there exist cluster-tilted algebras which are not hereditary and
hence of infinite global dimension [25], thus not derived equivalent to the path algebra
KQ.

On the other hand, there are mutation classes satisfying condition (d2) but not (d1).
Indeed, by [26] the property that the Ginzburg dg-algebra has its cohomology concen-
trated only in degree zero (and hence is quasi-isomorphic to the Jacobian algebra) is
preserved under QP mutation. Mutation classes with this property thus satisfy (d2), but
as their Jacobian algebras are 3-Calabi-Yau, condition (d1) does not hold.

Since we deal with mutation classes, it is natural to ask when a single mutation of QP
leads to derived equivalence of the corresponding Jacobian algebras. Possible candidates
for tilting complexes, studied in this context by Vitoria [35] and Keller-Yang [26, §6],
take the following form. For an algebra A given by a quiver with relations and a vertex
k without loops, consider the complexes

7N =FLPr)e@r), 1770 =EF%P)e(@PR)

where P; denotes the indecomposable projective corresponding to i, the map f (respec-
tively, g) is induced by all the arrows ending (respectively, starting) at k, and the terms
P; for i # k lie in degree 0. Each of these complexes is not always tilting, but when it is,
it induces a derived equivalence D(A) = D(End T, (A)) (or D(A) = D(End T} (A)))
which generalizes the BGP reflection functor and forms a specific instance of a perverse
Morita equivalence [33]. In this case we denote the endomorphism algebra by g, (A)
(resp. y; (A)) and call it the negative (resp. positive) mutation of the algebra A, see [30].
Note that it might well happen that none of the algebra mutations is defined, or that
both of them are defined but not isomorphic.

Given a Jacobian algebra P(Q, W) and a vertex k, there are now two notions of
mutation that we may consider. The first is mutation of quivers with potentials leading
to the Jacobian algebra P(ux(Q,W)), whereas the second is given by the negative and
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positive algebra mutations of P(Q, W). Roughly speaking, the mutation is good if these
two notions are compatible. More precisely, the mutation of (@, W) at the vertex k is
good if i, (P(Q, W) = P(us(Q, W) or s (P(Q, W) = P(jup(Q, W)).

By definition, a good mutation implies the derived equivalence of the corresponding
Jacobian algebras, known in the physics literature as Seiberg duality. Hence one is
motivated to consider the following property which implies the condition (ds).

(03) For any (Q, W) € Q, the mutation at any vertex k of @ is good. Furthermore,
if both algebra mutations of P(Q, W) at k are defined, they are isomorphic.

It will turn out that all the mutation classes possessing properties (d1) and (d2) which
we will present have also the stronger property (d3). Note that for these classes an
answer to Question 12.2 in [16] can be given in a very explicit way, namely at any vertex
k the (unique) algebra mutation of P(Q, W) coincides with P(ux(Q, W)).

Motivated by algorithmic applications, e.g. [30, §5.3], we consider the additional finite-
ness condition:

(04) Q consists of a finite number of quivers.

According to Felikson, Shapiro and Tumarkin [17], the connected quivers whose mu-
tation class is finite are either those arising from triangulations of bordered oriented
surfaces with marked points as introduced by Fomin, Shapiro and Thurston [18], or
they are mutation equivalent to one of 11 exceptional quivers, or they are acyclic with
2 vertices and r > 3 arrows between them.

1.1. Mutation classes from triangulations of bordered surfaces with marked
points. For quivers arising from such triangulations, potentials have been defined by
Labardini-Fragoso [28]. In this paper we further restrict our attention to the case of no
punctures, that is, the marked points lie on the boundary of the surface. The associ-
ated potentials are then sums of oriented 3-cycles (triangles) and the resulting Jacobian
algebras are the gentle algebras studied by Assem, Briistle, Charbonneau-Jodoin and
Plamondon [2].

We start by characterizing the configurations of marked points yielding mutations
classes satisfying the property (d2).

Theorem 1. Let S be a surface with boundary 05 and M C 95 a finite set of marked
points with at least one point in any connected component of 0S.
Then the mutation class of quivers with potentials corresponding to the triangulations
of (S, M) satisfies condition (82) if and only if either:
e M contains exactly one point from each connected component of 05, or
e S is a disc and M consists of 4 or 5 points.

In view of this theorem, any g > 0 and b > 1 such that (g,b) # (0,1) give rise to a
mutation class of QPs which we will denote by Q,; having the required properties (1)
and (d2). Namely, take S to be a bordered surface of genus g with b boundary compo-
nents, M to be a set of b points containing one point from each boundary component
and consider all the quivers with potentials arising from the triangulations of (S, M).
Note that the case (0, 1) corresponding to the disc is excluded as it has no triangulations.

We denote by 7, the class of Jacobian algebras of the QPs in Qg;. As these are
finite-dimensional gentle algebras, one can consider the derived invariant developed by
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(g,b) || Vertices | Arrows | Triangles || Size of Qg
(0,2) 2 2 0 1

1) || 4 7 2 1

03)| 6 9 2 6
(1,2) 8 14 4 56
04) | 10 16 4 140
21)| 10 19 6 105
1,3) || 12 21 6 3236

TABLE 1. The numbers of vertices, arrows and triangles for quivers in
Qg and the size of Qg for small values of (g,b).

Avella-Alaminos and Geiss [5] given as a function N> — N which we write as a finite
sum Y _;_; ¢;(n;, m;) where ¢; > 0 and (n1,my),..., (n,, m,) are distinct elements of N2.

Further properties of the mutation class Qg5 and the corresponding algebras 7, are
elaborated in the next theorem.

Theorem 2. Let (g,b) # (0,1) and let Qg4 be the class of quivers with potentials arising
from triangulations of a bordered surface of genus g with b boundary components and b
marked points, one at each boundary component. Let 1,3 be the corresponding class of
Jacobian algebras.

(a) Qgp s a mutation class satisfying conditions (81), (62), (03) and (64).

(b) Any quiver in Qg has n vertices, e arrows and t triangles, where

n=06(g— 1)+ 4b, e=2n—b=12(9g— 1) + 7b, t=4(g—1)+20b.

(c) For any algebra A € Ty,
(i) the determinant of its Cartan matriz is 2,
(ii) its Awvella-Alaminos-Geiss invariant is b(1,1) 4+ ¢(0, 3).

(d) Any two algebras in T,y are connected by a sequence of algebra mutations, that
is, if A,N' € Ty then there exist algebras A = Ao, A1,..., Ay, = A in Ty
and a sequence of vertices ki,ka, ..., km such that for any 1 < j < m we have
Aj = g, (Aj1) or Aj = pf (A1)

(e) Typ is closed under derived equivalence, that is, if A € Ty, and A is derived
equivalent to A, then also A € Ty .

(f) When (g,b) # (¢',V'), the classes Qqp and Qg (as well as Ty and Ty ) are
disjoint.

In particular we see that for any even positive integer n there exists at least one
mutation class of QPs with the properties (d1), (d2), (d3), (d4) whose quivers have n
vertices. For small number of vertices, details for these classes are given in Table 1 and
representative quivers from each class are shown in Figure 1. To make our results more
explicit we will outline a procedure to draw these quivers for any (g,b) in Section 3.

The theorem implies that each of the classes Qg (and 7;) enjoys two remarkable
properties. First, all the quivers in Q,; have the same number of arrows. This is
quite rare for an arbitrary mutation class (which is then necessarily finite). Second, not
only that all the algebras in 7, are derived equivalent, but 7, is closed under derived
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FIGURE 1. Representative quivers in each Q,; for small values of (g,b).
The potentials are sums of the oriented 3-cycles (chosen such that any
arrow belongs to at most one cycle).

equivalence and hence constitutes an entire derived equivalence class of algebras which
can be explicitly described using QP and their mutations.

Explicit descriptions of all the algebras derived equivalent to a given algebra A are
quite rare since by Rickard theorem [32] any endomorphism ring of a tilting complex
over A gives rise to an algebra derived equivalent to A, and it is usually hard to control
all the possible tilting complexes. Some notable instances of algebras A where such
explicit descriptions have been obtained include the path algebras of quivers of Dynkin
types A [3] and D [24] as well as affine type A [4]. Other instances are the classes of
Brauer tree algebras with fixed numerical parameters (number of edges, multiplicity of
the exceptional vertex) which are closed under derived equivalence and moreover any
two algebras in a class can be connected by a sequence of algebra mutations, see [27, §5].

1.2. Exceptional mutation classes. We now turn our attention to the 11 exceptional
quivers whose mutation classes are finite. Of these, Eg, E7, Es, Fg, E7 and Eg are
acyclic and hence their mutation classes will not satisfy condition (d2). In order to deal
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with Eél’l), Egl’l) and Eél’l), we consider the more general QP given by the quiver

. e o,
Qpar 51/7 ® 2 qg—1
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and the potential W), o, = e(ai1an + $152) + n(aaz + v172) for some p,q,r > 2. The
quivers Eél’l), Eél’l), Eél’l) coincide with the quivers Q3 33, (2,44, (2,36, respectively.

Similar diagrams appear in singularity theory as Coxeter-Dynkin diagrams [31, §3.9].
In fact, the Jacobian algebra P(Qp.q.r, Wpqr) can be realized as the endomorphism
algebra of a cluster-tilting object in the cluster category of the weighted projective

line X, [6]. As already observed by Barot and Geiss [7], the quivers Eél’l), Eél’l),

Eél’l) can thus be realized by the tubular cluster categories corresponding to the tubular
weights (3,3,3), (2,4,4), (2,3,6) respectively. Moreover, the quiver Eél’l) which turns
out to be of particular interest with regard to derived equivalence is also realized by the

stable category of modules over the preprojective algebra of Dynkin type D, studied by
Geiss-Leclerc-Schréer [20].

Theorem 3. Letp,q,r > 2 and let Qp, 4, be the mutation class of (Qp.q,r, Wp.qr) defined
above. Then:
(a) Qpgr satisfies condition (02) if and only if (p,q,7) = (3,3,3).
(b) The class Q33,3 corresponding to the quiver Eél’l) consists of 49 QPs and satisfies
conditions (61), (62), (03), (04).
(c) Furthermore, the Jacobian algebra A = P(Q, W) of any (Q,W) € Q333 has the
following properties:
(i) For any vertex k, one and only one of the algebra mutations u; (A), uf(A)
is defined;
(ii) The determinant of the Cartan matriz of A is 4 and its Cozeter polynomial
is (2% + 1)

Finally we have to deal with the quivers Xg and X7 discovered by Derksen and
Owen [15]. While for X7 we could not find a potential whose Jacobian algebra is finite-
dimensional, for Xg we have the following result.

Theorem 4. Consider the quiver Xg and the potential Wg as given below:

i’ 5 We = a18171 + aofoy2 + are1y102e272.
2
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Then the mutation class of (Xe, Ws) consists of 5 QPs and satisfies conditions (61), (62),
(63), (64). The Cartan determinant of the corresponding Jacobian algebras is 4 and their
Coxeter polynomial is (x — 1)°.

Acknowledgements. I would like to thank Maxim Kontsevich and Frol Zapolsky for
useful discussions.

2. ON THE PROOFS

2.1. Good mutations for gentle Jacobian algebras. Consider a gentle algebra A =
KQ/I given as a quiver with relations over an algebraically closed field. Since the only
relations are zero-relations (of length 2), the algebra A has a basis consisting of all the
non-zero paths.

A mazimal non-zero path (known also as a non-trivial permitted thread) is a path
Q1o .. . oy between some vertices ¢ and j which is non-zero in A and is maximal with
this property, that is, for any arrow (3 ending at ¢ and arrow - starting at j we have
Ba; =0 and o,y = 0 in A. Any arrow is contained in a unique maximal non-zero path.

Similarly, a mazimal zero path (known also as a non-trivial forbidden thread) is a
path ajas ... an in @ such that agasy1 = 0in A for all 1 < s < m which is maximal
with this property. For further details we refer the reader to [5].

We start by characterizing when algebra mutations are defined in terms of maximal
paths. In addition, the next proposition implies that algebra mutations of gentle algebras
without loops coincide with Brenner-Butler tilts [11].

Proposition 2.1. Let A = KQ/I be gentle and let k be a vertex of Q without loops.

(a) py (A) is defined if and only if no mazimal non-zero path starts at k.
(b) ,u;(A) 1s defined if and only if no mazimal non-zero path ends at k.
(c) py (A) is defined if and only if the Brenner-Butler tilting module of A at k is

defined.

(d) ,u;(A) is defined if and only if the Brenner-Butler tilting module of A° at k is
defined.

Proof. Follows from [30, Prop. 2.3]. O

Let (Q,W) be a QP arising from a triangulation of a bordered unpunctured oriented
surface, so that its Jacobian algebra is gentle. The next proposition characterizes the
vertices k for which mutations are good in terms of their neighborhoods. The neigh-
borhood of a vertex k is the full subquiver on the set consisting of k and all vertices
which are targets of arrows starting at k or sources of arrows ending at k. By a triangle
in a quiver arising from a triangulation we mean an oriented 3-cycle bound by radical
square zero relations. Such triangles are in bijection with the internal triangles of the
triangulation.

Proposition 2.2. Let (Q,W) be a QP arising from a triangulation of a bordered un-
punctured oriented surface. Then:
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(a) The mutation of (Q, W) at a vertex is good if and only if its neighborhood is not
one of the following

SN SN /N PN

where o denotes the verter.

(b) If the mutation of (Q, W) at a vertex k is good and both the negative and positive
algebra mutations of P(Q, W) at k are defined, then they are isomorphic.

(c) A good mutation preserves the numbers of arrows and triangles in the quiver.

Proof. To assess whether a mutation is good or not, a-priori one needs to check that
an algebra mutation of P(Q, W) at k is defined as well as to verify that it is isomorphic
to P(ur(Q,W)). Compared to the former, the latter verification is much harder, so we
have developed criteria and algorithms to test for good mutations using only the data
whether the relevant algebra mutations are defined or not [30, §5], building on the notion
of D-split sequences of Hu and Xi [23].

Note that these criteria were formulated for cluster-tilting objects in 2-Calabi-Yau
categories, but by [1] and [12], the Jacobian algebras P(Q, W) and P(ui(Q,W)) can be
realized as endomorphism algebras of neighboring cluster-tilting objects in a 2-Calabi-
Yau triangulated category.

In the case of QP arising from triangulations of unpunctured bordered surfaces, the
only relations lie in oriented 3-cycles, so in order to determine whether an algebra muta-
tion is defined at some vertex, it is enough to consider its neighborhood. As the number
of possible neighborhoods is finite, they can be checked on a computer. Examples of
similar checks can be seen in [9, §3]. O

Proposition 2.3. Let (Q,W) be a QP arising from a triangulation of a bordered un-
punctured oriented surface. If the mutation at the vertex k is not good, then the Jacobian

algebras P(Q, W) and P(ur(Q,W)) are not derived equivalent.

Proof. The determinant of the Cartan matrix of such gentle Jacobian algebra is 2¢ where
t denotes the number of 3-cycles with radical square zero relations, as computed by
Holm [22]. The result now follows by observing that mutations which are not good
change the number of triangles in the quiver by 1. U

These results allow for a description of the derived equivalence classes of the gentle
algebras arising from triangulations of a given marked unpunctured surface in terms of
the properties of the corresponding triangulations, generalizing the derived equivalence
classifications of cluster-tilted algebras of Dynkin type A [14] and affine type A [8]. This
is a subject of further investigations.

2.2. A necessary condition for derived equivalence. Let S be a surface of genus
g > 0 with b > 1 boundary components. Let M be a set of marked points on the
boundary, with at least one point on each component.

Lemma 2.4. Assume that (g,b) # (0,1). Then there exists a triangulation of (S, M)
containing, for any boundary component C with marked points A1, Aa, ..., Ap, two dis-
tinct arcs i and j starting at Ay and Ay, respectively having a common endpoint E (which
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might be on C') as in the following picture.

Proof. By induction on the number of marked points in M. When this number is
minimal, that is, M contains exactly one point from each component, such triangulations
can be explicitly constructed, see Section 3.

Suppose we have constructed such triangulation for M and let M’ = M U {A,,+1}
where A,,+1 is a new marked point on a boundary component C. Then we obtain a
triangulation for M’ with the required property by adding the arc k connecting E and
A1 as in the following picture.

j .A’VV'L ..
—

"Amt1 C "Ag

XA

(2.1)

E

L
O

Proposition 2.5. Assume that (g,b) # (0,1). If the mutation class of the QP arising
from the triangulations of (S, M) satisfies condition (d2), then M contains exactly one
point from each boundary component of S.

Proof. Assume that M has m + 1 points A1,..., Am, Am+1 on a boundary component
C for some m > 1. By applying Lemma 2.4 for M \ {A,+1} and then the inductive step
in its proof, we get a triangulation having the arcs i, j, k as in (2.1). Let (Q, W) denote
the quiver with potential corresponding to this triangulation. Then the neighborhood
of k in @ is one of

o5 or o
N N
o, .j o, — > .j
hence by Proposition 2.2 the mutation of (Q, W) at k is not good. By Proposition 2.3,
the Jacobian algebras P(Q, W) and P(ur(Q,W)) are not derived equivalent. O

Remark 2.6. If (g,b) = (0,1), that is, S is a disc, then M has at least 4 points on its
boundary. Denoting the number of points by n + 3 for some n > 1, it is well known that
the quivers arising from the triangulations of (S, M) are precisely those in the mutation
class of the Dynkin quiver A,,. Such class will satisfy condition (d2) only for n = 1,2.

2.3. Sufficiency and further properties. We fix (¢g,b) # (0,1). Recall that Qg
denotes the mutation class consisting of the QP arising from triangulations of a marked
surface of genus g with b boundary components and a marked point on each component,
and 7, denotes the class of the corresponding (gentle) Jacobian algebras.
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Lemma 2.7. A quiver in Qg has n vertices, e arrows and t triangles, where
n=6(g—1)+ 4b, e=12(g — 1)+ 70, t=4(g—1)+2b.

Proof. The claim on the number of vertices follows from [18]. Since each boundary
component contains exactly one marked point, any triangulation consists of ¢ internal
triangles and b non-internal triangles, one for each boundary component (which becomes
one of its sides).

Fix a triangulation corresponding to the quiver. We count in two ways the pairs (v, A)
where A a triangle and ~ is an arc which is one of its sides. On the one hand, for every
internal triangle A there are 3 such arcs v and for every non-internal one there are 2
such arcs, giving us a total of 3t 4+ 2b pairs. On the other hand, each arc is a side of
exactly two triangles so that the total number of such pairs is 2n. From the equality
2n = 3t + 2b we deduce the formula for ¢.

Finally, each internal triangle gives rise to a 3-cycle in the quiver and hence to three
arrows whereas each non-internal one gives rise to one arrow. Thus e = 3t 4+ b and we
get the formula for e as well. O

For a gentle algebra A, denote its Avella-Alaminos-Geiss derived invariant [5] by ¢(A).
Lemma 2.8. Let A € Tyy. Then ¢(A) =b(1,1) +t(0,3) where t = 4(g — 1) + 2b.

Proof. Let C be a boundary component and A the marked point on C. In the triangu-
lation corresponding to A, let i1,4s,...,7s denote the arcs passing through A traversed
in an anti-clockwise order as in the following picture.

/\/

Then in the quiver with relations of A the path i1 — io — --- — 44 is a maximal
non-zero path whereas the arrow ; — 75 induced by the non-internal triangle containing
the arcs i1, 15 is a maximal zero path.

Thus, each component C' contributes (1, 1) to ¢(A). In addition, each internal triangle
in the triangulation yields an oriented 3-cycle with radical square zero relations, thus
contributes (0,3) to ¢(A). O

Proposition 2.9. Let A be a gentle algebra with ¢(A) = b(1,1) 4+¢(0,3) for some b > 0
and t > 0. Then:

(a) All zero-relations lie in radical square zero oriented 3-cycles.
(b) For any vertex v, the subquiver formed by v and the arrows incident to v is not
one of the following:

., ° .,

o N RN o N

Proof.
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(a) Any zero relation not in a radical square zero oriented cycle would yield a con-
tribution of some (n,m) with m > 1 to ¢(A). In addition, a radical square zero
oriented cycle of length m yields a contribution of (0, m).

(b) An inspection of each of the four cases reveals a contribution of (n, m) with n > 1
to ¢(A).

U

Corollary 2.10. Let A be a gentle algebra with ¢(A) = b(1,1) 4+ t(0,3) for some b > 0
andt > 0. Then A ~P(Q, W) for some (Q, W) arising from a triangulation of a marked
unpunctured surface. Moreover, all the mutations of (Q, W) are good.

Proof. The first assertion follows from Prop. 2.9(a) and [2, Prop. 2.8]. The second fol-
lows from Prop. 2.9(b) together with the characterization of good mutations in Propo-
sition 2.2. O

Proof of Theorem 2.

(a) Since it is known that conditions (1) and (d4) hold, we only need to show condi-
tion (d3) which will then imply (d2). Indeed, let (Q, W) € Q4. By Lemma 2.8,
d(P(Q,W)) = b(1,1) + ¢(0,3). Now the claim follows by part (b) of Proposi-
tion 2.9 together with Proposition 2.2.

(b) Follows from Lemma 2.7.

(c) Follows from [22] and Lemma 2.8.

(d) A and A’ are connected by a sequence of QP mutations which are good by prop-
erty (03) of Qg5 and hence induce the required sequence of algebra mutations.
Note that these are also Brenner-Butler tilts according to Proposition 2.1.

(e) Let A’ be derived equivalent to an algebra in 7g;. By a result of Schréer and
Zimmermann [34], the class of gentle algebras is closed under derived equivalence
and hence A’ is also gentle with the same derived invariant ¢(A’) = b(1,1)+t(0, 3).

By Corollary 2.10, A’ ~ P(Q, W) for some (Q, W) arising from a triangulation
of a bordered unpunctured surface (S, M) and moreover all mutations are good.
Since any mutation pug(Q,W) leads to a derived equivalent Jacobian algebra,
applying again Corollary 2.10 we see that all mutations of ug(Q, W) are good
as well. Applying mutations repeatedly we deduce that the mutation class of
(Q, W) satisfies condition (d2), and hence by the results of Section 2.2 (S, M) is
either a disc with 4 or 5 marked points or a surface of genus ¢’ with ' boundary
components and a marked point on each component. The first case is impossible
since (K A,) = (n+1,n—1) [5, §7]. Thus we are in the second case and by
Lemma 2.8 we must have b’ = b and ¢’ = g so that A’ € Tgy.

(f) Clear.

O

Proof of Theorem 1. For the implications in one direction, combine Proposition 2.5 and
Remark 2.6. The other direction follows from Theorem 2. O

2.4. The exceptional quivers. Consider the quiver with potential (Qp q.r, Wp.q.r) of
Section 1.2. By computing the Cartan matrix of the Jacobian algebra P(Q2,2,2, W222)
we see that its determinant equals 4, hence the same is true for any of the algebras
P(Qp.q,r, Wp,qr) obtained by gluing the linear quivers A, 1, A;—1 and A,_;.
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6

o 1
./ \.
\2
Y x
Rt

FI1GURE 2. Triangulations of bordered surfaces of genus g with one hole,
denoted by o, for g = 1,2,3. Edges having the same label are identified.

If at least one of p, q,r is greater than 3, say r > 3, then by performing mutation at

the vertex labeled r — 2 we get the Jacobian algebra P(Q,, ., W, ,,) with the quiver
6 _®1 L) %1
/
aq ®q
= A B2
.p—l e [ 3 o £ i | ) ~
! 1
72\ o s ®r—3 ®r_2 &1
and potential W .. = W4, + A, where A is the new 3-cycle in @, ;.. The Cartan

matrix of this algebra has determmant 8, as can be seen by direct calculation or invok-
ing [29]. It follows that P(Qp.¢.r, Wpqr) and P(Qy,, -, W, ) are not derived equivalent
and hence Q,, ,, does not satisfy condition (d2).

We are left with the case where p,q,7 < 3. The mutation classes Q222, Q223 and
Q233 coincide with the mutation classes of the acyclic quivers Dy, D5 and Eg, respec-
tively, hence they cannot satisfy condition (d2) either.

For the class Q333 as well as for the mutation class of (Xg, Ws), one computes the
Jacobian algebras in these finite mutation classes and applies the algorithms developed
in [30].

3. QUIVERS

In this section we provide a recipe to produce explicit quivers in each of the classes
Qg introduced in Section 1.1.

3.1. The case g > 0 and b = 1. We draw the fundamental polygon with 4g edges
labeled 1,2,1,2,...,2g9 — 1,2g,2g — 1, 2g corresponding to a surface of genus g, and put
the single hole inside the polygon near one of its vertices which serves as the marked
point (recall that all vertices of the polygon get identified on the surface). Then there
exist triangulations as shown in Figure 2.
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=]

®g+1

A / AN / ™\, / \.

FIGURE 3. Three building blocks for a quiver in Q1. Gluing points are
marked with o.

N /1’\7‘\ /lwl |

% =y o
N VN

. k

~A 4N

e —— 0 o — > O 7@

FIGURE 4. Quivers in 9,1 for g =1,2,3,4.

The corresponding quivers are then built by gluing three kinds of building blocks
shown in Figure 3, as demonstrated in Figure 4 for ¢ < 4. Each block corresponds to
a pair of consecutive labels 2¢ — 1,27 of edges in the polygon, and it is constructed by
considering all the triangles adjacent to these edges.

The left block corresponds to the initial and terminal pairs of labels {1,2} and {2g —
1,2g}. We have drawn the picture only for one pair, as it is symmetric (and isomorphic)
for the other pair. The middle one corresponds to all the intermediate pairs {2i — 1, 2i}
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where 1 < i < g and g # 2i — 1, whereas the right one arises from the middle pair
{g,9+ 1} when g is odd and involves the non-inner triangle containing the arcs x and y.

3.2. The case g > 0 and b > 1. The only triangle in the above triangulations which is
not inner is the “middle” one

(3.1) A© A
S
Yy

where the marked point is indicated by the letter A and o is the hole.

When there is more than one hole, we may arrange the other holes inside this triangle
and refine the triangulation to pass through the additional marked points B,C,... as
in the following pictures

(3.2) A© BO “A A© BO co ‘A

A quiver in Qg is thus obtained from our representative in Qg1 by replacing the
single arrow ®; —— ®y corresponding to the picture (3.1) by the quiver

(3.3)

x.\./.\./. .vo
oo !
NN AN

o ——>0

with 2(b— 1) oriented triangles. The b vertical arrows of this quiver correspond to the b
triangles which are not inner in the triangulation.

3.3. The case g = 0 and b > 1. This case is quite similar to the previous one. In
fact, by replacing the copy of the marked point -4 in the pictures (3.1) and (3.2) by an
additional hole we get triangulations of the sphere with b holes and b marked points, one
at each hole, which are shown below for b = 2,3, 4.

T xT
SN P P
A© B© A© B©° C©° A© B©° C© DO

- i ~ ="
) Yy

The corresponding quiver in Qg is obtained from the one in (3.3) with 2(b — 2)
oriented triangles by adding an arrow from z to y coming from the “external” triangle
consisting of the edges x, y and the boundary of the rightmost hole, see for example the
top row of Figure 1.
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