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Abstract. A triangular matrix ring Λ is defined by a triplet (R, S, M)
where R and S are rings and RMS is an S-R-bimodule. In the main the-
orem of this paper we show that if TS is a tilting S-module, then under
certain homological conditions on the S-module MS , one can extend TS

to a tilting complex over Λ inducing a derived equivalence between Λ
and another triangular matrix ring specified by (S′, R, M ′), where the
ring S′ and the R-S′-bimodule M ′ depend only on M and TS , and S′

is derived equivalent to S. Note that no conditions on the ring R are
needed.

These conditions are satisfied when S is an Artin algebra of finite
global dimension and MS is finitely generated. In this case, (S′, R, M ′) =
(S, R, DM) where D is the duality on the category of finitely generated
S-modules. They are also satisfied when S is arbitrary, MS has a finite
projective resolution and Extn

S(MS , S) = 0 for all n > 0. In this case,
(S′, R, M ′) = (S, R, HomS(M, S)).

1. Introduction

Triangular matrix rings and their homological properties have been widely
studied, see for example [4, 7, 8, 16, 18]. The question of derived equivalences
between different such rings was explored in the special case of one-point
extensions of algebras [2]. Another aspect of this question was addressed by
considering examples of triangular matrix algebras of a simple form, such as
incidence algebras of posets [14]. In this paper we extend the results of [14]
to general triangular matrix rings.

A triangular matrix ring Λ is defined by a triplet (R,S,M) where R and S
are rings and RMS is an S-R-bimodule. The category of (right) Λ-modules
can be viewed as a certain gluing of the categories of R-modules and S-
modules, specified by four exact functors. This gluing naturally extends
to the bounded derived categories. We note the similarity to the classical
“recollement” situation, introduced by Beilinson, Bernstein and Deligne [3],
involving six functors between three triangulated categories, originally in-
spired by considering derived categories of sheaves on topological spaces,
and later studied for derived categories of modules by Cline, Parshall and
Scott [5, 6], see also [13].

In Section 2 we show that triangular matrix rings arise naturally as en-
domorphism rings of certain rigid complexes over abelian categories that
are glued from two simpler ones. Here, a complex T ∈ Db(C) is rigid if
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HomDb(C)(T, T [n]) = 0 for all n 6= 0, where Db(C) denotes the bounded de-
rived category of an abelian category C. Similarly, an object T ∈ C is rigid
if it is rigid as a complex.

Indeed, when C is glued from the abelian categories A and B, we con-
struct, for any projective object of A and a rigid object of B satisfying some
homological conditions, a new rigid complex in Db(C) whose endomorphism
ring is a triangular matrix ring.

In particular, as demonstrated in Section 3, this construction applies for
comma categories defined by two abelian categories A, B and a right exact
functor F : A → B. In this case, any projective P of A and a rigid object
TB ∈ B satisfying Extn

B(FP, TB) = 0 for all n > 0, give rise to a rigid complex
T over the comma category, whose endomorphism ring is a triangular matrix
ring which can be explicitly computed in terms of P , TB and FP , as

EndDb(C)(T ) '
(

EndB(TB) HomB(FP, TB)
0 EndA(P )

)
.

In Section 4 we apply this construction for categories of modules over
triangular matrix rings. For a ring Λ, denote by ModΛ the category of all
right Λ-modules, and by Db(Λ) its bounded derived category. Recall that
a complex T ∈ Db(Λ) is a tilting complex if it is rigid and moreover, the
smallest full triangulated subcategory of Db(Λ) containing T and closed un-
der forming direct summands, equals perΛ, the full subcategory in Db(Λ) of
complexes quasi-isomorphic to perfect complexes, that is, bounded complexes
of finitely generated projective Λ-modules. If, in addition, Hn(T ) = 0 for
all n 6= 0, we call T a tilting module and identify it with the module H0(T ).

Two rings Λ and Λ′ are derived equivalent if Db(Λ) and Db(Λ′) are equiv-
alent as triangulated categories. By Rickard’s Morita theory for derived
equivalence [19], this is equivalent to the existence of a tilting complex
T ∈ Db(Λ) such that EndDb(Λ)(T ) = Λ′.

When Λ is a triangular matrix ring defined by two rings R, S and a
bimodule RMS , the category ModΛ is the comma category of Mod R, Mod S
with respect to the functor −⊗M : ModR→ Mod S. In this case, starting
with the projective R-module R and a tilting S-module TS , the complex T
constructed in Section 3 is not only rigid, but also a tilting complex, hence
we deduce a derived equivalence between Λ and the triangular matrix ring
EndDb(Λ)(T ), as expressed in the theorem below.

Theorem. Let R, S be rings and TS a tilting S-module. Let RMS be an
S-R-bimodule such that as an S-module, MS ∈ perS and Extn

S(MS , TS) = 0
for all n > 0. Then the triangular matrix rings

Λ =
(

R M
0 S

)
and Λ̃ =

(
EndS(TS) HomS(M,TS)

0 R

)
are derived equivalent.

We note that the assumption that TS is a tilting module implies that the
rings S and EndS(TS) are derived equivalent, hence the triangular matrix
ring specified by the triplet (R,S,M) is derived equivalent to a one specified
by (S′, R, M ′) where S′ is derived equivalent to S. We note also that no
conditions on the ring R (or on M as a left R-module) are necessary.
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The above theorem has two interesting corollaries, corresponding to the
cases where TS is injective or projective.

For the first corollary, let S be an Artin algebra, and let D : modS →
modSop denote the duality. When S has finite global dimension, one can
take TS to be the module DS which is then an injective tilting module.

Corollary. Let R be a ring, S an Artin algebra with gl.dim S < ∞ and
RMS an S-R-bimodule which is finitely generated as an S-module. Then the
triangular matrix rings

Λ =
(

R M
0 S

)
and Λ̃ =

(
S DM
0 R

)
are derived equivalent, where D is the duality on modS.

The ring Λ̃ depends only on R, S and M , hence it may be considered as
a derived equivalent mate of Λ.

The second corollary of the above theorem is obtained by taking the tilting
S-module to be S.

Corollary. Let R, S be rings and RMS an S-R-bimodule such that as an
S-module, MS ∈ perS and Extn

S(MS , S) = 0 for all n > 0. Then the
triangular matrix rings

Λ =
(

R M
0 S

)
and Λ̃ =

(
S HomS(M,S)
0 R

)
are derived equivalent.

This corollary applies to the following situations, listed in descending
order of generality; the ring S is self-injective (that is, S is injective as
a module over itself) and MS is finitely generated projective; the ring S is
semi-simple and MS is finitely generated; the ring S is a division ring and M
is finite dimensional over S. The latter case implies that a triangular matrix
ring which is a one-point extension is derived equivalent to the corresponding
one-point co-extension.

In Section 5 we conclude with three remarks concerning the specific case
of finite dimensional triangular matrix algebras over a field.

First, in the case when R and S are finite dimensional algebras over a field
and both have finite global dimension, an alternative approach to show the
derived equivalence of the triangular matrix algebras specified by (R,S,M)
and its mate (S, R,DM) is to prove that the corresponding repetitive alge-
bras are isomorphic and then use Happel’s Theorem [9, (II,4.9)]. However,
in the case that only one of R and S has finite global dimension, Happel’s
Theorem cannot be used, but the derived equivalence still holds. Moreover,
as we show in Example 5.3, there are cases when none of R and S have finite
global dimension and the corresponding algebras are not derived equivalent,
despite the isomorphism between their repetitive algebras.

Second, one can directly prove, using only matrix calculations, that when
at least one of R and S has finite global dimension, the Cartan matrices of
the triangular matrix algebra (R,S,M) and its mate are equivalent over Z,
a result which is a direct consequence of Theorem 4.9.
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Third, we note that in contrast to triangular matrix algebras, in the more
general situation of trivial extensions of algebras, the mates A n M and
A n DM for an algebra A and a bimodule AMA, are typically not derived
equivalent.

Acknowledgement. I am grateful to B. Keller for discussions of a prelim-
inary version of [14] which led to this current paper.

2. The gluing construction

Let A, B, C be three abelian categories. Similarly to [3, (1.4)], we view
C as glued from A and B if there exist certain functors i−1, i∗, j

−1, j! as
described below. Note, however, that we start by working at the level of
the abelian categories and not their derived categories. In addition, the
requirement in [3] of the existence of the additional adjoint functors i!, j∗ is
replaced by the orthogonality condition (2.6).

Definition 2.1. A quadruple of additive functors i−1, i∗, j
−1, j! as in the

diagram

A
i∗ //
C

i−1
oo

j−1

//
B

j!
oo

is called gluing data if it satisfies the four properties (2.1.1)–(2.1.4) below.

2.1.1. Adjunction. i−1 is a left adjoint of i∗ and j−1 is a right adjoint of j!.
That is, there exist bi-functorial isomorphisms

HomA(i−1C,A) ' HomC(C, i∗A)(2.1)

HomB(B, j−1C) ' HomC(j!B,C)(2.2)

for all A ∈ obA, B ∈ obB, C ∈ ob C.

2.1.2. Exactness. The functors i−1, i∗, j
−1, j! are exact.

Note that by the adjunctions above, we automatically get that the func-
tors i∗, j

−1 are left exact while i−1, j! are right exact.

2.1.3. Extension. For every C ∈ ob C, the adjunction morphisms j!j
−1C →

C and C → i∗i
−1C give rise to a short exact sequence

(2.3) 0→ j!j
−1C → C → i∗i

−1C → 0

2.1.4. Orthogonality.

i−1j! = 0 j−1i∗ = 0(2.4)

i−1i∗ ' IdA j−1j! ' IdB(2.5)

and in addition,

HomC(i∗A, j!B) = 0 for all A ∈ obA, B ∈ obB(2.6)

Using the adjunctions (2.1) and (2.2), the assumptions of (2.4),(2.5) can
be rephrased as follows. First, the two conditions of (2.4) are equivalent to
each other and each is equivalent to the condition

HomC(j!B, i∗A) = 0 for all A ∈ obA, B ∈ obB(2.7)
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Similarly, the conditions in (2.5) are equivalent to the requirement that
i∗ and j! are fully faithful functors, so that one can think of A and B as
embedded in C. Moreover, from (2.3) and (2.7) we see that (B,A) is a
torsion pair [10, (I.2)] in C.

Observe also that (2.6) could be replaced with the assumption that the
functor (i−1, j−1) : C → A × B is faithful. Indeed, one implication follows
from (2.4) and (2.5), and the other follows using (2.3).

From now on assume that (i−1, i∗, j
−1, j!) form a gluing data.

Lemma 2.2. If P is a projective object of C, then i−1P is projective in A.
Similarly, if I an injective object of C, then j−1I is injective in B.

Proof. A functor which is a left adjoint to an exact functor preserves pro-
jectives, while a right adjoint to an exact functor preserves injectives [8,
Corollary 1.6]. �

The exact functors i−1, i∗, j
−1, j! give rise to triangulated functors between

the corresponding bounded derived categories. We use the same notation
for these derived functors:

Db(A)
i∗ //
Db(C)

i−1
oo

j−1

//
Db(B)

j!
oo

Note that adjunctions and orthogonality relations analogous to (2.1), (2.2),
(2.4), (2.5) (but not (2.6)) hold also for the derived functors. In particular,
i∗ and j! are fully faithful.

Definition 2.3. An object T in an abelian category A is called rigid if
Extn

A(T, T ) = 0 for all n > 0.

Proposition 2.4. Let P be a projective object of C and TB be a rigid object
of B such that Extn

B(j−1P, TB) = 0 for all n > 0. Consider the complex

T = i∗i
−1P ⊕ j!TB[1]

in Db(C). Then HomDb(C)(T, T [n]) = 0 for n 6= 0 and

EndDb(C)(T ) '
(

EndB(TB) Ext1C(i∗i
−1P, j!TB)

0 EndA(i−1P )

)
is a triangular matrix ring.

Proof. Since T has two summands, the space HomDb(C)(T, T [n]) decomposes
into four parts, which we now consider.

Since i∗ is fully faithful and i−1P is projective,

(2.8) HomDb(C)(i∗i
−1P, i∗i

−1P [n]) ' HomDb(A)(i
−1P, i−1P [n])

vanishes for n 6= 0. Similarly, since j! is fully faithful and TB is rigid,

HomDb(C)(j!TB, j!TB[n]) ' HomDb(B)(TB, TB[n])

vanishes for n 6= 0. Moreover, by orthogonality,

HomDb(C)(j!TB, i∗i
−1P [n]) = 0

for all n ∈ Z.
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It remains to consider HomDb(C)(i∗i−1P, j!TB[n]) and to prove that it van-
ishes for n 6= 1. Using (2.3), we obtain a short exact sequence 0→ j!j

−1P →
P → i∗i

−1P → 0 that induces a long exact sequence, a fragment of which
is shown below:

HomDb(B)(j
−1P, TB[n− 1]) ' HomDb(C)(j!j

−1P [1], j!TB[n])→
HomDb(C)(i∗i

−1P, j!TB[n])→ HomDb(C)(P, j!TB[n]).
(2.9)

Now observe that the right term vanishes for n 6= 0 since P is projective,
and the left term of (2.9) vanishes for n 6= 1 by our assumption on the
vanishing of Ext•B(j−1P, TB). Therefore

HomDb(C)(i∗i
−1P, j!TB[n]) = 0

for n 6= 0, 1. This holds also for n = 0 by the assumption (2.6).
To complete the proof, note that Ext1C(i∗i

−1P, j!TB) has a natural struc-
ture of an EndA(i−1P )-EndB(TB)-bimodule via the identifications

EndA(i−1P ) ' EndC(i∗i−1P ) EndB(TB) ' EndC(j!TB)

�

Remark 2.5. The assumptions in the proposition are always satisfied when
P is a projective object of C and TB is any injective object of B.

Remark 2.6. One can formulate an analogous statement for a rigid object
TA of A and an injective object I of C.

3. Gluing in comma categories

Let A,B be categories and F : A → B a functor. The comma category
with respect to the pair of functors A F−→ B Id←− B [15, II.6], denoted by (F ↓
Id), is the category C whose objects are triples (A,B, f) where A ∈ obA,
B ∈ obB and f : FA → B is a morphism (in B). The morphisms between
objects (A,B, f) and (A′, B′, f ′) are all pairs of morphisms α : A → A′,
β : B → B′ such that the square

(3.1) FA
f //

Fα
��

B

β
��

FA′ f ′ // B′

commutes.
Assume in addition that A, B are abelian and that F : A → B is an

additive, right exact functor. In this case, the comma category C is abelian
[8]. Consider the functors

A
i∗ //
C

i−1
oo

j−1

//
B

j!
oo

defined by

i∗(A) = (A, 0, 0) i∗(α) = (α, 0) i−1(A,B, f) = A i−1(α, β) = α

j!(B) = (0, B, 0) j!(β) = (0, β) j−1(A,B, f) = B j−1(α, β) = β

for objects A ∈ obA, B ∈ obB and morphisms α, β.
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Lemma 3.1. The quadruple (i−1, i∗, j
−1, j!) is a gluing data.

Proof. We need to verify the four properties of gluing data. The adjunction
follows by the commutativity of the diagrams

FA
f //

Fα
��

B

��
FA′ // 0

0 //

��

B

β
��

FA′ f ′ // B′

for α : A→ A′ and β : B → B′.
For exactness, note that kernels and images in C can be computed com-

ponentwise, that is, if (α, β) : (A,B, f) → (A′, B′, f ′) is a morphism in C,
then ker(α, β) = (ker α, ker β, f |F (ker α)) and similarly for the image. The
extension condition follows from

0→ (0, B, 0)
(0,1B)−−−−→ (A,B, f)

(1A,0)−−−−→ (A, 0, 0)→ 0

and orthogonality is straightforward. �

One can use the special structure of the comma category C to define
another pair of functors. Let i! : A → C and j\ : C → B be the functors
defined by

i!(A) = (A,FA, 1FA) i!(α) = (α, Fα)

j\(A,B, f) = coker f j\(α, β) = β̄

where β̄ : coker f → coker f ′ is induced from β.

Lemma 3.2. i! is a left adjoint of i−1, j\ is a left adjoint of j!, and

i−1i! ' IdA j−1i! = F j\i! = j\i∗ = 0 j\j! ' IdB

Proof. The adjunctions follow by considering the commutative diagrams

FA
1FA //

Fα
��

FA

β=f ′◦Fα
��

FA′ f ′ // B′

FA
f //

��

B

β
��

0 // B′

and noting that the commutativity of the right diagram implies that β fac-
tors uniquely through coker f . The other relations are straightforward. �

Remark 3.3. The diagram

A× B
(i!,j!) //

C
(i−1,j−1)

oo

(i−1,j\)//
A× B

(i∗,j!)
oo

is a special case of the one in [8, p. 7], viewing C as a trivial extension of
A× B.

Proposition 3.4. Let P be a projective object of A and TB be a rigid object
of B such that Extn

B(FP, TB) = 0 for all n > 0. Assume that FP ∈ ob(B) has
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a projective resolution in B and consider T = (P, 0, 0)⊕(0, TB, 0)[1] ∈ Db(C).
Then HomDb(C)(T, T [n]) = 0 for n 6= 0 and

EndDb(C)(T ) '
(

EndB(TB) HomB(FP, TB)
0 EndA(P )

)
,

where the bimodule structure on HomB(FP, TB) is given by left composition
with EndB(TB) and right composition with EndB(FP ) through the natural
map EndA(P )→ EndB(FP ).

Proof. Since i! is a left adjoint of an exact functor, it takes projective objects
of A to projective objects of C. Hence i!P = (P, FP, 1FP ) is projective and
we can apply Proposition 2.4 for i!P and TB. As (P, 0, 0) = i∗i

−1i!P and
(0, TB, 0) = j!TB, we only need to show the isomorphism

Ext1C ((P, 0, 0), (0, TB, 0)) ' HomB(FP, TB)

as EndA(P )-EndB(TB)-bimodules.
Indeed, let

(3.2) · · · → Q2 → Q1 → FP → 0

be a projective resolution of FP . Then (P, 0, 0) is quasi-isomorphic to the
complex

· · · → j!Q
2 → j!Q

1 → i!P → 0→ . . .

whose terms are projective since j! is a left adjoint of an exact functor.
Therefore Ext1C((P, 0, 0), (0, TB, 0)) can be identified with the morphisms,
up to homotopy, between the complexes

(3.3) . . . // j!Q
2 // j!Q

1 // i!P // 0 // . . .

. . . // 0 // j!TB // 0 // 0 // . . .

By Lemma 3.2, HomC(i!P, j!TB) = HomA(P, i−1j!TB) = 0, thus any ho-
motopy between these complexes vanishes, and the morphism space equals
ker(HomC(j!Q

1, j!TB) → HomC(j!Q
2, j!TB)). Using the fact that j! is fully

faithful and applying the functor HomB(−, TB) on the exact sequence (3.2),
we get that the morphism space equals HomB(FP, TB), as desired.

Under this identification, the left action of EndB(TB) ' EndC(j!TB) is
given by left composition. As for the right action of EndA(P ), observe that
any α ∈ EndA(P ) extends uniquely to an endomorphism in the homotopy
category

(0, FP, 0)
(0,1)//

(0,Fα)
��

(P, FP, 1FP )

(α,Fα)
��

(0, FP, 0)
(0,1)// (P, FP, 1FP )

which determines a unique endomorphism, in the homotopy category, of the
top complex of (3.3). �
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Remark 3.5. When the functor F : A → B admits a right adjoint G :
B → A, the comma category (F ↓ Id) is equivalent to the comma cat-
egory (Id ↓ G) corresponding to the pair A Id−→ A G←− B. In this case,
one can define also a right adjoint i! of i∗ and a right adjoint j∗ of j−1,
and we end up with the eight functors (i!, i−1, i∗, i

!) and (j\, j!, j
−1, j∗).

The bimodule HomB(FP, TB) in Proposition 3.4 can then be identified with
HomA(P,GTB).

4. Application to triangular matrix rings

4.1. Triangular matrix rings. Let R and S be rings, and let RMS be an
S-R-bimodule. Let Λ be the triangular matrix ring

(4.1) Λ =
(

R M
0 S

)
=

{(
r m
0 s

)
: r ∈ R, s ∈ S, m ∈M

}
where the ring structure is induced by the ordinary matrix operations.

For a ring R, denote the category of right R-modules by ModR. The
functor − ⊗M : ModR → Mod S is additive and right exact, hence the
corresponding comma category (−⊗M ↓ IdMod R) is abelian.

Lemma 4.1 ([1, III.2]). The category Mod Λ is equivalent to the comma
category (−⊗M ↓ IdMod R).

Proof. One verifies that by sending a triple (XR, YS , f : X⊗M → Y ) to the
Λ-module X ⊕ Y defined by

(4.2)
(
x y

) (
r m
0 s

)
=

(
xr f(x⊗m) + ys

)
and sending a morphism (α, β) : (X, Y, f)→ (X ′, Y ′, f ′) to α⊕β : X⊕Y →
X ′⊕Y ′, we get a functor (−⊗M ↓ IdMod R)→ Mod Λ which is an equivalence
of categories. �

Corollary 4.2. There exists gluing data

Mod R
i∗ //

Mod Λ
i−1

oo

j−1

//
Mod S.

j!
oo

The functors occurring in Corollary 4.2 can be described explicitly. Let

eR =
(

1 0
0 0

)
, eS =

(
0 0
0 1

)
.

Using (4.2), observe that for a Λ-module ZΛ,

(i−1Z)R = ZeR (j−1Z)S = ZeS(4.3)

where r acts on i−1Z via ( r 0
0 0 ) and s acts on j−1Z via ( 0 0

0 s ). The morphism
(i−1Z)⊗M → j−1Z is obtained by considering the actions of ( 0 m

0 0 ), m ∈M ,
and the map Z 7→ (i−1Z, j−1Z, (i−1Z)⊗M → j−1Z) defines a functor which
is an inverse to the equivalence of categories constructed in the proof of
Lemma 4.1.

Conversely, for an R-module XR and S-module YS , we have (i∗X)Λ = X
and (j!Y )Λ = Y where ( r m

0 s ) acts on X via r and on Y via s.
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Lemma 4.3. The image of ΛΛ in the comma category equals (R,M, 1M )⊕
(0, S, 0).

Proof. Use (4.3) and

Λ
(

1 0
0 0

)
=

(
R 0
0 0

)
, Λ

(
0 0
0 1

)
=

(
0 M
0 S

)
.

�

Remark 4.4. Since − ⊗M admits a right adjoint Hom(M,−), we are in
the situation of Remark 3.5 and there are eight functors (i!, i−1, i∗, i

!) and
(j\, j!, j

−1, j∗). For the convenience of the reader, we now describe them as
standard functors ⊗ and Hom involving idempotents, see also [6, Section 2]
and [17, Proposition 2.17].

If A is a ring and e ∈ A is an idempotent, the functor

HomA(eA,−) = −⊗A Ae : ModA→ Mod eAe

admits a left adjoint − ⊗eAe eA and a right adjoint HomeAe(Ae,−). By
taking A = Λ and e = eR we get the three functors (i!, i−1, i∗). Similarly,
e = eS gives (j!, j

−1, j∗).
In addition, the natural inclusion functor

HomA/AeA(A/AeA,−) = −⊗A/AeA A/AeA : ModA/AeA→ Mod A

admits a left adjoint − ⊗A A/AeA and a right adjoint HomA(A/AeA,−).
By taking A = Λ and e = eR, observing that eSΛeR = 0, we get the three
functors (j\, j!, j

−1). For e = eS we get (i−1, i∗, i
!).

4.2. The main theorem. For a ring Λ, denote by Db(Λ) the bounded
derived category of ModΛ, and by perΛ its full subcategory of complexes
quasi-isomorphic to perfect complexes, that is, bounded complexes of finitely
generated projective Λ-modules.

For a complex T ∈ Db(Λ), denote by 〈addT 〉 the smallest full trian-
gulated subcategory of Db(Λ) containing T and closed under forming di-
rect summands. Recall that T is a tilting complex if 〈addT 〉 = perΛ and
HomDb(Λ)(T, T [n]) = 0 for all integers n 6= 0. If, moreover, Hn(T ) = 0 for
all n 6= 0, we call T a tilting module and identify it with the module H0(T ).

Theorem 4.5. Let R,S be rings and TS a tilting S-module. Let RMS be an
S-R-bimodule such that as an S-module, MS ∈ perS and Extn

S(MS , TS) = 0
for all n > 0. Then the triangular matrix rings

Λ =
(

R M
0 S

)
and Λ̃ =

(
EndS(TS) HomS(M,TS)

0 R

)
are derived equivalent.

Proof. For simplicity, we shall identify Mod Λ with the corresponding comma
category. We will show that T = (R, 0, 0)⊕ (0, TS , 0)[1] is a tilting complex
in Db(Λ) whose endomorphism ring equals Λ̃.

Applying Proposition 3.4 for the projective R-module R and the rigid S-
module TS , noting that FR = MS and Extn

S(MS , TS) = 0 for n > 0, we see
that HomDb(Λ)(T, T [n]) = 0 for all n 6= 0 and moreover EndDb(Λ)(T ) ' Λ̃.
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It remains to show that 〈addT 〉 = per Λ. First, we show that T ∈ perΛ.
Observe that j!(perS) ⊆ perΛ, since j! is an exact functor which takes
projectives to projectives and j!S = (0, S, 0) is a direct summand of Λ.
Hence in the short exact sequence

(4.4) 0→ (0,M, 0)→ (R,M, 1M )→ (R, 0, 0)→ 0,

we have that (0,M, 0) ∈ perΛ by the assumption that MS ∈ perS, and
(R,M, 1M ) ∈ perΛ as a direct summand of Λ. Therefore (R, 0, 0) ∈ perΛ.
In addition, (0, TS , 0) ∈ perΛ by the assumption TS ∈ perS, hence T is
isomorphic in Db(Λ) to a perfect complex.

Second, in order to prove that 〈addT 〉 = perΛ it is enough to show
that Λ ∈ 〈addT 〉. Indeed, since (0, TS , 0)[1] is a summand of T , by the
exactness of j! and our assumption that 〈addTS〉 = perS, we have that
(0, S, 0) ∈ 〈addT 〉 and (0,M, 0) ∈ 〈addT 〉. Since (R, 0, 0) is a summand of
T , by invoking again the short exact sequence (4.4) we see that (R, M, 1M ) ∈
〈addT 〉, hence Λ ∈ 〈addT 〉.

Therefore T is a tilting complex in Db(Λ), and by [19] (see also [12, (1.4)]),
the rings Λ and Λ̃ ' EndDb(Λ)(T ) are derived equivalent. �

Remark 4.6. The assumption that TS is a tilting module implies that the
rings S and EndS(TS) are derived equivalent.

Remark 4.7. When the tilting module TS is also injective, it is enough to
assume that MS ∈ perS.

4.3. Applications. Let S be an Artin algebra over an Artinian commu-
tative ring k, and let modS be the category of finitely generated right
S-modules. Let D : Mod S → Mod Sop be the functor defined by D =
Homk(−, J), where J is an injective envelope of the direct sum of all the
non-isomorphic simple modules of k. Recall that D restricts to a duality
D : mod S → modSop. Applying it on the bimodule SSS , we get the bi-
module SDSS = Homk(S, J).

Lemma 4.8. Let R be a ring and RMS a bimodule. Then SDMR '
HomS(RMS , SDSS) as R-S-bimodules.

Proof. By the standard adjunctions,

HomS(RMS ,Homk(SSS , J)) ' Homk(RMS ⊗S SS , J) = Homk(RMS , J).

�

It follows that D = HomS(−, DSS), hence DSS is an injective object in
Mod S. We denote by gl.dim S the global dimension of modS.

Theorem 4.9. Let R be a ring, S an Artin algebra with gl.dim S <∞ and
RMS an S-R-bimodule which is finitely generated as an S-module. Then the
triangular matrix rings

Λ =
(

R M
0 S

)
and Λ̃ =

(
S DM
0 R

)
are derived equivalent, where D is the duality on modS.
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Proof. The module DSS is injective in Mod S and any module in modS has
an injective resolution with terms that are summands of finite direct sums of
DS. Since gl.dim S <∞, such a resolution is finite, hence 〈addDS〉 = per S
and M ∈ perS for any M ∈ modS.

Therefore the assumptions of Theorem 4.5 are satisfied for TS = DS
(see also Remark 4.7), and it remains to show that EndS(TS) = S and
HomS(M,TS) ' SDMR (as bimodules). This follows by the Lemma 4.8
applied for the bimodules SDSS and RMS . �

Remark 4.10. Under the assumptions of Theorem 4.9, when R is also
an Artin k-algebra and k acts centrally on M , the rings Λ and Λ̃ are
Artin algebras and the derived equivalence in the theorem implies that
Db(modΛ) ' Db(mod Λ̃).

Moreover, by using the duality D, one sees that Theorem 4.9 is true for
two Artin algebras R and S and a bimodule RMS on which k acts centrally
under the weaker assumptions that M is finitely generated over k and at
least one of gl.dim R, gl.dim S is finite.

By taking TS = S in Theorem 4.5, we get the following corollary.

Corollary 4.11. Let R, S be rings and RMS an S-R-bimodule such that
as an S-module, MS ∈ perS and Extn

S(MS , S) = 0 for all n > 0. Then the
triangular matrix rings

Λ =
(

R M
0 S

)
and Λ̃ =

(
S HomS(M,S)
0 R

)
are derived equivalent.

Remark 4.12. The conditions of Corollary 4.11 hold when the ring S is
self-injective, that is, S is injective as a (right) module over itself, and RMS

is finitely generated projective as an S-module. In particular, this applies
when S is a semi-simple ring and M is finitely generated as an S-module.

Remark 4.13. Recall that for a ring R, a division ring S and a bimodule
SNR which is finite dimensional as a left S-vector space, the one-point ex-
tension R[N ] and the one-point coextension [N ]R of R by N are defined as
the triangular matrix rings

R[N ] =
(

S SNR

0 R

)
[N ]R =

(
R RDNS

0 S

)
.

where D = HomS(−, S) is the duality on modS. By taking M = DN in
the preceding remark, we see that the rings R[N ] and [N ]R are derived
equivalent. Compare this with the construction of “reflection with respect
to an idempotent” in [20].

5. Concluding remarks

5.1. Repetitive algebras. In the specific case of Artin algebras, another
approach to the connection between a triangular matrix algebra Λ and its
mate Λ̃ involves the use of repetitive algebras, as outlined below.
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Let Λ be an Artin algebra over a commutative Artinian ring k and let
D : mod k → mod k be the duality. Recall that the repetitive algebra Λ̂ of
Λ, introduced in [11], is the algebra (without unit) of matrices of the form

Λ̂ =


. . . DΛi−1 0
0 Λi DΛi 0

0 Λi+1 DΛi+1

0
. . .


where Λi = Λ, DΛi = DΛ for i ∈ Z, and only finite number of entries are
nonzero. The multiplication is defined by the canonical maps Λ ⊗Λ DΛ →
DΛ, DΛ ⊗Λ Λ → DΛ induced by the bimodule structure on DΛ, and the
zero map DΛ⊗Λ DΛ→ 0.

When Λ is a triangular matrix algebra, one can write

Λ =
(

R M
0 S

)
DΛ =

(
DR 0
DM DS

)
and a direct calculation shows that the maps Λ⊗DΛ→ DΛ and DΛ⊗Λ→
DΛ are given by multiplication of the above matrices, under the convention
that M ⊗S DS → 0 and DR⊗R M → 0.

As for the mate Λ̃, we have

Λ̃ =
(

S DM
0 R

)
DΛ̃ =

(
DS 0
M DR

)
,

therefore the repetitive algebras of Λ and its mate Λ̃ have the form

Λ̂ =


. . . DM DS

R M DR
S DM DS

R M DR
S DM DS

R M
. . .

,
̂̃Λ =


. . . M DR

S DM DS
R M DR

S DM DS
R M DR

S DM
. . .


and are thus clearly seen to be isomorphic.

When k is a field and both algebras R and S have finite global dimension,
this can be combined with Happel’s Theorem [9, (II.4.9)] to deduce that Λ
and its mate Λ̃ are derived equivalent.

Note, however, that for the derived equivalence between Λ and Λ̃ to hold,
it is enough to assume that only one of R, S has finite global dimension (see
Remark 4.10).

Moreover, while the repetitive algebras of Λ and Λ̃ are always isomorphic,
in the case where none of R, S have finite global dimension, the algebras Λ
and Λ̃ may not be derived equivalent, see Example 5.3 below.

5.2. Grothendieck groups. In this subsection, k denotes an algebraically
closed field. Let Λ be a finite dimensional k-algebra and let P1, . . . , Pn be
a complete collection of the non-isomorphic indecomposable projectives in
modΛ. The Cartan matrix of Λ is the n × n integer matrix defined by
Cij = dimk Hom(Pi, Pj).

The Grothendieck group K0(perΛ) of the triangulated category perΛ can
be viewed as a free abelian group on the generators [P1], . . . , [Pn], and the
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Euler form

〈K, L〉 =
∑
r∈Z

(−1)r dimk HomDb(Λ)(K, L[r])

on perΛ induces a bilinear form on K0(perΛ) whose matrix with respect to
that basis equals the Cartan matrix.

It is well known that a derived equivalence of two algebras Λ and Λ′

induces an equivalence of the triangulated categories perΛ and perΛ′, and
hence an isometry of their Grothendieck groups preserving the Euler forms.
We now consider the consequences of the derived equivalence of Theorem 4.9
(when R and S are finite dimensional k-algebras) for the corresponding
Grothendieck groups.

For simplicity, assume that Λ is basic. In this case, there exist primitive
orthogonal idempotents {e1, . . . , en} in Λ such that Pi ' eiΛ for 1 ≤ i ≤ n.
Therefore by the isomorphisms HomΛ(eiΛ, N) ' Nei of k-spaces for any
Λ-module NΛ, we get that Cij = dimk ejΛei.

Lemma 5.1. Let R, S be basic, finite dimensional k-algebras, and let RMS

be a finite dimensional S-R-bimodule. Then the Cartan matrix CΛ of the
corresponding triangular matrix algebra Λ is of the form

CΛ =
(

CR 0
CM CS

)
where CR, CS are the Cartan matrices of R, S.

Proof. Let e1, . . . , en and f1, . . . , fm be complete sets of primitive orthogonal
idempotents in R and in S. Let ēi = ei ( 1 0

0 0 ) and f̄j = fj ( 0 0
0 1 ). Then

ē1, . . . , ēn, f̄1, . . . , f̄m is a complete set of primitive orthogonal idempotents
of Λ and the result follows by computing the dimensions of ēiΛēi′ , ēiΛf̄j ,
f̄jΛēi and f̄jΛf̄j′ . In particular, (CM )ji = dimk eiMfj . �

Since dimk fjDMei = dimk eiMfj , we get by Lemma 5.1 that the Cartan
matrices of Λ and its mate Λ̃ are

CΛ =
(

CR 0
CM CS

)
C
eΛ

=
(

CS 0
Ct

M CR

)
.

When at least one of R and S has finite global dimension, the derived
equivalence of Theorem 4.9 implies that CΛ and C

eΛ
represent the same

bilinear form, hence they are congruent over Z, that is, there exists an
invertible matrix P over Z such that P tCΛP = C

eΛ
.

One can also show this congruence directly at the level of matrices, as
follows.

Lemma 5.2. Let K be a commutative ring. Let A ∈Mn×n(K) be a square
matrix, B ∈ GLm(K) an invertible square matrix and C ∈Mm×n(K). Then
there exists P ∈ GLn+m(K) such that

P t

(
A 0
C B

)
P =

(
B 0
Ct A

)
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Proof. Take P =
(

0 In

−B−1Bt −B−1C

)
. Then

P t

(
A 0
C B

)
P =

(
0 −BB−t

In −CtB−t

) (
A 0
C B

) (
0 In

−B−1Bt −B−1C

)
=

(
0 −BB−t

In −CtB−t

) (
0 A
−Bt 0

)
=

(
B 0
Ct A

)
�

Note that one could also take P =
(
−A−tCt −A−tA

Im 0

)
, hence it is

enough to assume that at least one of A and B is invertible.
The conclusion of the lemma is false if one does not assume that at least

one of the matrices A, B is invertible over K. This can be used to construct
triplets consisting of two finite dimensional algebras R, S (necessarily of
infinite global dimension) and a bimodule M such that the triangular matrix
algebra Λ and its mate Λ̃ are not derived equivalent.

Example 5.3. Let R = k[x]/(x2), S = k[y]/(y3) and M = k with x and y
acting on k as zero. Then the triangular matrix algebras

Λ =
(

k[x]/(x2) k
0 k[y]/(y3)

)
Λ̃ =

(
k[y]/(y3) k

0 k[x]/(x2)

)
are not derived equivalent, since one can verify that their Cartan matrices

CΛ =
(

2 0
1 3

)
C
eΛ

=
(

3 0
1 2

)
are not congruent over Z. Note that despite the fact that R and S are
self-injective, Corollary 4.11 cannot be used since M does not have a finite
projective resolution.

5.3. Trivial extensions. Triangular matrix rings are special cases of trivial
extensions [1, p. 78]. Indeed, if R, S are rings and RMS is a bimodule, the
corresponding triangular matrix ring is isomorphic to the trivial extension
A n M where A = R× S and M is equipped with an A-bimodule structure
via (r, s)m = rm and m(r, s) = ms.

We remark that even when A is a finite dimensional k-algebra of finite
global dimension and M is a finite dimensional A-bimodule, the trivial ex-
tension algebras AnM and AnDM are generally not derived equivalent, so
that the derived equivalence in Theorem 4.9 is a special feature of triangular
matrix rings.

Example 5.4. Let A = kQ where Q is the quiver •1 // •2 and let M
be the kQ-bimodule corresponding to the following commutative diagram
of vector spaces

0(1,1)

$$HHH
HH

0(2,1)

::vvvvv

$$HHH
HH

k(1,2)

0(2,2)

::vvvvv
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Then A n M is the path algebra of the quiver • ⇒ • while A n DM is the
path algebra of • � • modulo the compositions of the arrows being zero.
These two algebras are not derived equivalent since gl.dim(AnM) = 1 while
gl.dim(A n DM) =∞.

References

[1] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin
algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University
Press, Cambridge, 1995.

[2] Michael Barot and Helmut Lenzing, One-point extensions and derived equivalence, J.
Algebra 264 (2003), no. 1, 1–5.
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